Model Identification and Control of
Priority Queueing in Software Defined
Networks

Enrico Reticcioli

Department of Information Engineering,
Computer Science and Mathematics

Ph.D. Program in ICT - System Engineering, Telecommunications and HW/SW Platforms
XXXIII cycle - SSD ING-INF/03

Universita degli Studi dell’ Aquila

Advisor: Prof. Alessandro D’Innocenzo
Co-Advisor: Prof. Fabio Graziosi

Coordinator: Prof. Vittorio Cortellessa

A thesis submitted for the degree of
Doctor of Philosophy

2021

Acknowledgements

This work was supported by the Italian Government under Cipe resolution
n.135 (Dec. 21, 2012), project INnovating City Planning through Information
and Communication Technologies (INCIPICT).

Abstract

The heterogeneity of modern network infrastructures involves different de-
vices and protocols bringing out several issues in organizing and optimizing
network resources, making their coexistence a very challenging engineering
problem. In this scenario, Software Defined Network (SDN) architectures de-
couple control and forwarding functionalities by enabling the network devices
to be remotely configurable/programmable in run-time by a controller, and the
underlying infrastructure to be abstracted from the application layer and the
network services, with the final aim of increasing flexibility and performance.
As a direct consequence identifying an accurate model of a network and for-
warding devices is crucial in order to apply advanced control techniques such
as Model Predictive Control (MPC) to optimize the network performance. An
enabling factor in this direction is given by recent results that appropriately
combine System Identification and Machine Learning techniques to obtain
predictive models using historical data retrieved from a network. This the-
sis presents a novel methodology to learn, starting from historical data and
appropriately combining autoregressive exogenous(ARX) identification with
Regression Trees (RT) and Random Forests (RF), an accurate model of the dy-
namical input-output behavior of a network device that can be directly and effi-
ciently used to optimally and dynamically control the bandwidth of the queues
of switch ports, within the SDN paradigm. Both the Mininet network emulator
environment and a real dataset obtained from measurements of the network of
an Italian internet service provider (Sonicatel S.r.1.). have been used to validate
the prediction accuracy of the derived predictive models. The benefits of the
proposed dynamic queueing control methodology in terms of Packet Losses
reduction and Bandwidth savings (i.e. improvement of the Quality of Service)

has been finally demonstrated.

Contents

[Abstract
[Introduction|
I Related Works|

2 Background Knowledge|
2.1 ftware Defin rks Archi el o e e e e e

2.1.3 Application Plane|. 0 L.

2.2 Overview Of Machine Learning Algorithms|

[2.2.1 Supervised Learning|

[2.2.2 Unsupervised Learning|

[2.2.3 Semi-Supervised Learning|00

[2.2.4 Remforcement Learning|,

3 RT- and RF-based models of SDN switched for Priority Queueing|

[3.1 Mininet network emulation environment and control problem|.

[3.2 Regression Trees and Random Forest based models for MPC|
[3.2.1 RT and RF background,
[3.2.2 Switching ARX (SARX) model identification viaRT|

2 ARX model identification viaRE
[3.2.4 MPC problem formulation.f.

[3.3.1 Disturbance predictive model validation|

[3.3.2 Queues predictive model validation|

[3.3.3 Control performance|

11
11
17
18
18

29

4 RT- and RF-based predictive models of multi-service traffic in a real Service |

Provider r 43

.1 Control performance validation over dedicated hardware network|. 43
.2 ‘Traffic predictive model validation on Italian Internet provider network|. . . 47
IConclusions| 49
[References| 51
[Publications| 68
A" Python Codes for Mininet Environment| 71
[A.1 main_controller TOS.py| 71
[A.2 datapath_monitor TOS.py|. 72
[A.3 Controller commands.py| L. 80
[A.4 qgos_simple switch_ 13.py| 84
[A.5 ofctlrest.pyl o 87
[A.6 rest_conf switch.py| 102
A7 1est_qOS.py|. . . - v o e e e 105

. opology _qos_ _ PY - 127

A ditg.pyl. e 136

(B Python Codes For Dedicated Hardware Network Devices| 139
[B.1 Traffic Real Hwd.py|, 139
[B.2 Start ITGRecv.pyo 145
B.3 ditg.py|. 145
[B.4 Set Queue.pyl 147
[B.5 Sendlime.py| 148
B.6 ReadTime.anol L 150

il

List of Figures

[2.1 ~ 'The high-level SDN architecture proposed by ONF| 8
[2.2 Example of OpenFlow-based SDN network.| 10
[2.3 Common machine learning algorithms.|. 12

[2.4 A basic neural network with three layers: an input layer, a hidden layer and

anoutputlayer| L 14
(3.1 _Mininet emulated network architecture.]00 22
[3.2 Static queues rate with routed packets relative to DSCP| 23

[3.3 NRMSE of the disturbance predictive model over a time horizon of N =5 32
[3.4 Comparison between the real traffic (YELLOW LINE) and the traffic pre-
iction for the different models for Service O 32
[3.5 NRMSE, up to V= 5 and for each priority class, for RT (blue), RF (red),
NN with sigmoids as activation function (yellow) and NN with hyperbolic

tangent as activation function (black).|o 00000 34

[3.6 Gnid pattern emerged from dataset distribution.| L. 35

[3.7 NRMSE of the queues output predictive model over a time horizon of N = |

o, without knowledge of the future disturbances| 36

[3.8 NRMSE of the queues output predictive model over a time horizon of /N = |

5, with knowledge of the 4-steps future disturbances|. 36

[3.9 Cumulative Packet Losses without knowledge of the future disturbance. . . 38

[3.10 Comparison between Cumulative Packet Losses with (solid lines) and with- |

out (dashed lines) knowledge of the future disturbance.| 38

(3.11 Bandwidth saving comparison without (a) and with (b) knowledge of the |

il

%)

Packets that transit inside the switch (a), comparison between packets 1n-

coming 1n the switch 1n emulation environment and 1n dedicated hardware

(b) and sum of packets sent by the switch port with different control model

v

[3 7 46
4.3 NRMSE of the packets predictive model over a time horizon of N = 10| . . 47
4.4 NRMSE of the packets predictive model over a time horizon of N = 10 |

| afterone dataupdate.| oL L Lo 48
4.5 NRMSE of the packets predictive model at prediction horizon of N=1 with |

| different updated models. Every update add 288 samples (about 1 day) to |

| the previous model training data.| L 0L 49

List of Tables

[3.1 Identification parameters|

vi

Introduction

A communication network involves the interconnection of a large number of devices, proto-
cols and applications, as well as application-, service- and user-specific Quality of Service
(QoS) and Quality of Experience (QoE) requirements: the problem of optimizing the per-
formance of such a complex distributed system while guaranteeing the desired QoS and
QoE specifications is a very challenging engineering problem since the heterogeneity and
complexity of such network infrastructures pose a number of challenges in effectively mod-
eling, managing and optimizing network resources (e.g. see [1, 2] and references therein).

Thanks to the recently introduced Software Defined Network (SDN) paradigm [3]] the
control plane and the data plane are decoupled: this enables the possibility of learning (i.e.
identifying) dynamical network models to be used for management and optimization pur-
poses. Indeed, in SDN, network resources are managed by a logically centralized controller
that have a global view of the network: this feature provides the capacity of monitoring and
collecting, in real-time, data on the network state and configuration as well as packet and
flow-granularity information [4]. More in detail, a SDN controller device can configure
the forwarding state of each switch by using a standard protocol called OpenFlow (OF)
[S]. Thanks to the OF counter variables (e.g. flow statistics, port statistics, queue statis-
tics, etc.), the controller can retrive information (feedback) from the network devices and
store/process them for optimization purposes [6]. A SDN controller can supervise many
aspects of traffic flow, as segment routing and queue management on switch ports.

Indeed, the most difficult challenge to be addressed in order to apply optimization tech-
niques is to derive a predictive model of the queues of the switch behaviour. To the best
of the author knowledge the state of the art in deriving accurate dynamical models of com-
munication networks still lacks of methods that exploit historical network data to learn
(identify) a dynamical network model that can be directly used for optimal control (e.g. of
segment routing and/or queue management) and is practical from the computational com-
plexity point of view.

The goal of this research is exploiting control theory combined with Machine Learning

techniques to compute an accurate model for predicting queues state inside a switch ports,

and use this model to optimally control queues scheduling via bandwidth allocation. In
particular, a novel methodology to learn an accurate model of the dynamical input-output
behavior of a switch device starting from historical data, that combines ARX identifica-
tion with Regression Trees (RT) and Random Forests (RF) algorithms [7, |8, 9]], has been
presented as the main contribution [10]. At first a comparison between the prediction ac-
curacy of the proposed technique with respect to Neural Network (NN) models has been
shown. Then in a network emulation environment the proposed novel identification tech-
nique (differently from NNs, that provide nonlinear predictive models that are impractical
for optimization from the computational complexity viewpoint) has been directly and ef-
ficiently used to control the bandwidth of the queues of switch ports with the final aim of
reducing packet losses, and thus improving QoS, taking into account the priority of dif-
ferent services. We validate our approach both on real traffic data and on an emulative
setup.

The manuscript is organized as follows: in Chapter[I]a survey on related works is pro-
vided; a background knowledge about SDN and Machine learning has been introduced
in Section [2.1] and in Section [2.2] respectively; in Section [3.1] the network emulation en-
vironment has been illustrated; in Section the model identification technique and its
embedding in a MPC problem formulation solvable via Quadratic Programming (QP) has
been described; in Section [3.3]the prediction accuracy and control performance validation

using the proposed emulation environment has been provided.

Chapter 1
Related Works

The problems of modeling, managing and optimizing resources in a heterogeneous com-
munication network is a very challenging engineering problem because of its inherent com-
plexity [} 2, 11} [12]].

Numerous studies have been conducted to maximize the performance of the controller
and OpenFlow switch of SDN, however, few results and methodologies exist to model and
perform optimal control of SDN switches with priority scheduling. When analyzing the
literature regarding traffic management in SDN and priority queueing, we can distinguish
three main different approaches.

Heuristic approaches, where algorithms to both identify and control traffic within a
queue are based on rule-of-thumbs and empirical approaches that do not take into account
any particular model: in [13] a heuristic method is proposed to balance the packet load
among queues in order to reduce packet losses, which does not aim at providing an op-
timal solution; in [[14] authors provide a scheduling algorithm for handling the incoming
data traffic by enqueuing packets into the corresponding queue based on priority and High
Priority queue is dequeued first; in [[135] the authors define multiple queues with different
priority classes, which are used to prioritize VoIP packet based on delay, and the controller
decides where to enqueue the packet based on delay and considering 5 different decision
thresholds.

Parametric approaches, where the control of queues is based on less heuristics and
more objective methods. More precisely, one of more parameters that describe the QoS
of an SDN are chosen and optimization is performed based on static models characterised
by such parameters: both in [16] and [17] the authors consider different approaches to
model and control queuing delays with specific network parameters; in [18] QoE is taken
into account in the context of VOIP and the decision metric for selecting the best link for
establishing a new VoIP call is based on the MOS quality metric, which is a typical measure

of the level of a user’s satisfaction of the quality of a call. These approaches despite the

3

fact that are easy to understand and to implement, may not be often suitable to describe and
control traffic flows in large and complex networks as they are not based on a dynamical
network model.

Model-based approach, where a dynamical mathematical model of packet flows within
a queue is considered, is the one most related to the research conducted in this thesis. In the
classical literature of queuing theory, in particular applied to SDN, most of the approaches
are based on classic structures for models [19] and many techinques are exploited to es-
timate the parameters and the state of a queue [20]. In [21], the authors emphasized that
switch performance depends on multiple factors such as: flow-table size, packet arrival
rate, etc., and they took these key factors into account for the design of their M/Geo/1 sys-
tem where the arriving packets follow a Poisson distribution and the service times follows a
Geometric distribution; in [22], beside describing a comprehensive review of the literature
(mostly M/M/k and M/G/k), authors derived a new model for a queueing network, based
on Quasi Bird Death (QBD) processes; another approach based on a dynamical model for
Model Predictive Control is described in [23]], where the authors derive a Discrete Time
Markov Jump Linear System to model a queueing network with the aim of defining predic-
tive control policies based on MPC; finally, in [24] the author proposes a new congestion
control algorithm based on MPC, called MPAQM, where the queue length is predicted
based on the extended TCP/AQM system model and a state estimator. The main drawback
of the approach proposed by the authors here is that they linearize and discretize the model
of a TCP/AQM interconnection system as illustrated in [25]]; Nonlinear MPC can be ap-
plied, but the problem is that the resulting optimization problem can be nonconvex and so
hard to solve. In such scenarios, linearization is a solution but not always a good solution
because of the fact that linearize a model of a complex system not ensure adequate control
performance, especially when the system is going to operate far from of the linearization
point.

Obviously the most interesting are the Model-based approaches. However, their main
drawback is related to the identification of the model. One issue is related to the need of
having access to the queue’s buffer data to identify the model and, at least with commercial
hardware, this is not possible in general. A second issue is that classical models, such
as the ones previously discussed, are usually designed to provide best accuracy for one
step prediction. When applying MPC one wants to forecast and exploit the value of state
variables for multiple steps ahead: using classical approaches this is achieved by using the
prediction computed at k& + 1 to predict the state at k£ + 2, and so on. This approach is not
always accurate when a long prediction horizon is considered, since many additional issues

arise such as error propagation and increased uncertainty. In such situations, a multiple

output strategy where a model is able to directly predict the state at different future time
steps, or one model for each time step as we will propose in this work, can increase the MPC
performance. Of course this comes with additional computational complexity, especially
when the number of time steps to be forecasted increases: however, as will be shown later
on, this is not an issue in our methodology since the future predictions can be computed
exploiting the advantages of binary decision trees and parallel computation.

The last and most important issue is that the mathematical models proposed in such
literature do not allow to directly exploit MPC methods with, simultaneously, good ac-
curacy and a realistically implementable computational complexity, i.e. using Quadratic
Programming (QP) solvers. Tackling such research challenges is the main topic of this the-
sis. Indeed, to the best of the author’s knowledge, the state of the art in deriving accurate
dynamical models of communication networks still lacks of methods that exploit historical
network data to learn (identify) a dynamical network model that can be directly used for
optimal control (e.g. of segment routing and/or queue management) and is practical from
the computational complexity point of view [1} 2, 26, 27, 28, 29| [30]. This manuscript
provides a novel methodology to fill this gap.

In this scenario, computing technologies such as graphic processing and tensor pro-
cessing units represent a good opportunity to implement advanced control theoretic (e.g.
MPC) and machine learning algorithms (e.g. decision trees, deep neural networks, etc.) in
the communication networks [31} 32} |33} 34]. In summary, the real-time programmability
of SDN controllers and the availability of massive historical data enable the exploitation
of data analysis and optimization techniques for improving networks efficiency and perfor-
mance.

Other Machine Learning (ML) approaches applied to telecommunication networks has
been investigated over the years. A Knowledge Plane (KP) approach [35] has been pro-
posed to enable automation, recommendation and intelligence by applying ML and cogni-
tive techniques. However the KP approach has not been prototyped nor deployed because
each node of traditional network systems, such as routers or switches, can only view and act
over a small portion of the system. This implies that each node can learn only from a (small)
part of the complete system and therefore it is very complex to design control algorithms
beyond the local domain [36]. Thanks to SDN the network resources are managed by a
logically centralized controller that have a global view of the network [3} 137, 138, 39, 40].
This feature provides the capacity of collecting data on the network state and opens the
possibility of improving the characteristics of each network device with ML algorithms.

To apply optimization techniques to derive a predictive model of the switch queues be-
haviour is a difficult challenge to be addressed [41},42,43] 44, /45]]. On this line of research,

Cello et al. provide in [46] a predictive model for estimating QoS in order to detect the
need for a re-routing strategy due to link saturation. However, this framework cannot be
used to apply traffic optimization techniques. In [47] an initial effort is conducted to derive
a general hybrid systems framework to model the flow of traffic in communication net-
works. In [48] the authors provide a first formulation and implementation, based on hybrid
systems theory, of a mathematical and simulative environment to formally model the effect
of router/link failures on the dynamics of TCP and UDP packet flows belonging to differ-
ent end-user services (i.e. http, ftp, mailing and video streaming). However, even though
hybrid systems are very effective in modelling a network of routers, using such framework
for implementing traffic optimization is out of question for computational complexity is-
sues. A further research question focuses on designing strategies for periodic updating of
network models, in order to maintain good performance despite the evolution of the real
system [49].

The potential impact of machine learning in networks is evident from the huge lit-
erature on the topic: Patcha and Park [50] have given a detailed description of machine
learning techniques in the domain of intrusion detection; Nguyen and Armitage [51] focus
on IP traffic classification; Bkassiny et al. [52] have surveyed existing machine learning
based methods in Cognitive Radio Networks; [S3] investigated how machine learning tech-
niques can be applied in wireless sensor networks; Wang et al. [54] have presented the
state-of-the-art on Artificial Intelligence based techniques applied to evolve heterogeneous
networks and discussed future research challenges; Buczak and Guven [55] investigated
data mining methods for cyber-security intrusion detection; Klaine et al. [56] have sur-
veyed machine learning algorithms for self organizing cellular networks; [S7] investigated
how to improve network traffic control using machine learning techniques; Hodo et al.
[S8]] focus on machine learning based Intrusion Detection System; Zhou et al. [S9] focus
on cognitive radio technologies enforced by machine learning techniques to enhance spec-
trum utilization and energy efficiency of wireless networks; Chen et al. [60] have studied
neural networks solutions applied in wireless networks for virtual reality and edge caching;
Usama et al. [32] have applied unsupervised learning techniques in the general domain
of networking. Although machine learning techniques have been widely investigated in
the communication scientific community, to the best of our knowledge no existing work
focuses on the applications of machine learning and control theory for identifying models
of network devices in the domain of Software Defined Network (SDN), with the aim of

efficiently apply Model Predictive Control.

Chapter 2

Background Knowledge

This chapter briefly presents the main characteristics of SDN and the main ML algorithms

of interest. For a more in-depth knowledge on ML applied to the SDN we refer to [33]].

2.1 Software Defined Networks Architecture

The Open Networking Foundation (ONF) [61]] is a nonprofit consortium dedicated to the
development and standardization of SDN. The SDN paradigm has been defined by ONF as
follows: “In the SDN architecture, the control plane and data plane are decoupled, network
intelligence and state are logically centralized, and the underlying network infrastructure
is abstracted from the applications” [37]. A SDN architecture is composed by three main
planes, including data plane, control plane and application plane. The architectural com-
ponents of each plane and their interactions are shown in Figure In the following, we

give a brief description of these planes and their interactions.

2.1.1 Data Plane

The data plane, or infrastructure plane, is the lowest layer in SDN architecture. This plane
is composed by physical switches, virtual switches and others forwarding devices. Virtual
switches are software-based switches, which can run on common operating systems. Open
vSwitch [62]], Indigo [63] and Pantou [64] are three implementations of virtual switches.
Physical switches are hardware-based switches. They can be implemented on open network
hardware (e.g., NetFPGA [65]) or implemented on networking hardware vendors’ mer-
chant switches. Many networking hardware vendors such as HP, NEC, Huawei, Juniper and
Cisco, have supported SDN protocols. Virtual switches support complete features of SDN
protocols, while physical switches lack the flexibility and feature completeness. However,
physical switches have a higher flow forwarding rate than virtual switches. SwitchBlade

Control Control Control
module module module

[Application control plane j

(Control Application JContm\

module Jcontrol interfacel module

SDN network control Legacy network
[SDN network control plane j [control plane

Southbound API S B

Hypervisar 5 °,

Figure 2.1: The high-level SDN architecture proposed by ONF.

[66]] and ServerSwitch [67] are two NetFPGA-based physical switches. These switches
in data plane are responsible for forwarding, dropping and modifying packets based on

instructions received from the Control Plane (CP) through Southbound Interfaces (SBIs).

2.1.2 Control Plane

The control plane is the “brain” of SDN systems, which can define network resources,
dynamically choose forwarding rules and make network administration flexible and agile.

The controller is responsable of many relevant tasks like:
* the communication between forwarding devices and applications;

* it exposes and abstracts network state information of the data plane to the application

plane;

* it translates the requirements from applications into custom policies and distributes

them to forwarding devices;

 provides essential functionalities that most of network applications need, such as
shortest path routing, network topology storage, device configuration and state infor-

mation notifications etc.

There are many controller architectures, such as Ryu [68], OpenDayLight, [69] NOX [70],
POX [71], Floodlight [72] and Beacon [7/3]]. Three communication interfaces allow the
controllers to interact: southbound, northbound (NBI) and eastbound/westbound interfaces.

The SBIs are defined between the control plane and the data plane. They allow forwarding
devices to exchange network state information and control policies with the CP and pro-
vide functions such as statistics reports, forwarding operations, programmatic control of all
device-capability advertisements and event notifications. OpenFlow [3]] promoted by ONF
is the first and the most popular open standard SBI. There exist other less popular propos-
als such as OVSDB [74], Protocol-Oblivious Forwarding (POF) [75] and OpenState [76].
With NBIs, automation, innovation and management of SDN networks has been facilitated
thanks to the fact that applications can exploit the abstract network views provided by the
CP. The ONF is trying to define the standard NBIs and a common information model. The
eastbound/westbound interfaces are used in the multi-controller SDN networks. Due to the
vast amount of data flows in such networks and the limited processing capacity of one con-
troller, large-scale networks are always partitioned into several domains where each domain
has its own controller. The eastbound/westbound interfaces are responsible for the commu-
nication among multiple controllers. This communication is necessary to exchange infor-
mation in order to provide a global network view to the upper-layer applications. Onix [77]]
and HyperFlow [/8] are two distributed control architectures. Because their eastbound-
/westbound interfaces are private, they cannot communicate with each other. To enable the
communication between different types of SDN controllers, SDNi [79], East-West Bridge
[80] and Communication Interface for Distributed Control plane (CIDC) [81]] have been
proposed as eastbound/westbound interfaces to exchange network information. However,

the eastbound/westbound interfaces have not yet been standardized.

2.1.3 Application Plane

The highest layer in the SDN architecture is the application plane. These applications can
provide new services and perform business management, optimization and can obtain the
required network state information through controllers” NBIs. Based on the received in-
formation and other requirements, the applications can apply some control logic to change
network behaviors. The SDN-based applications have attracted a lot of attention from
academia. Mendiola et al. [82]] have discussed the impact of SDN on Traffic Engineering
(TE) and surveyed the SDN-based TE solutions. Security in SDN has been surveyed in
[83L 184, 185, 186, [877, I88]. Especially, Yan et al. [[87] have researched on Distributed Denial
of Service (DDoS) attacks in SDN-based cloud computing systems, and discussed future
research challenges. Fault management in SDN has been surveyed in [89], which gives an
identification and classification of the main fault management issues, and does valuable sur-
veys and discussions about efforts that address those issues. Guck et al. [90] have studied

the centralized QoS routing mechanisms in SDN, and introduced a novel Four-Dimensional

9

(4D) evaluation framework. SDN has been deployed in many networks, such as transport
networks [91]], optical networks [92], wireless networks [93] 38]], Internet of Things (IoT)
[94], edge computing [95], Wide Area Networks (WAN) [96], cloud computing [97], Net-
work Function Virtualization (NFV) 99].

For more details on SDN, please refer to 107].

To understand the SDN architecture, it is important to recall its basic operation. Figure
[2.2] shows the working procedure of the OpenFlow-based SDN network [6]. Each Open-
Flow switch has a flow table and uses the OpenFlow protocol to communicate with the
SDN controller. The messages transmitted between the OpenFlow-based switches and the
software-based controller are standardized by the OpenFlow protocol [[73]. The OpenFlow
controller can manage the traffic forwarding by modifying flow entries in switches flow
tables. The flow table in the OpenFlow switch is comprised of flow entries to determine
the processing actions of different packets on the data plane. When an OpenFlow switch

receives a packet on the data plane, the packet header fields will be extracted and matched

Flow Table for SW1 Flow Table for SW2
Rule Action Stats Rule Action Stats
Entryl pert=F1, output(P3) Entryl | src_ip=192.168.100.3 drop

dst_ip=192.168.100.3

Flow Table for SW2 after the

Flow Table for SW1 after the communication with Controller
communication with Controller open FIOW Controller 2 s
Rule Action Stats
Rule Action Stats
g =P1 Entryl | src_ip=192.168.100.3 drop
d inport=P1,
Entryl | ¢ ip=192.168.100.3 | °UtPut(P3) sre_ip=192.168.100.1,
Bt Entry2 |46 ip=192.168.100.2 | *UPut(P2)
- inport=P1,
Entry2 | g ip=192.168.1002 *UtPUtP2) Entry | SFIP1OZIGRI002 |
i inport=P2 Y3 | 4st_ip=192.168.100.1 | *UtPUPD
Entry3 | ot ip=192.168.100.1 | OUtPUt(PD)
(5)
, " '
(5)
Q—.@' @
2 (10) (8) &

192.168.100.1 192.168.100.2

Flow Table for SW3
Rule ‘ Action Stats

Qupere=ri, output(P2)

Enryl | ot ip=192.168.100.3

=

192.168.100.3

Figure 2.2: Example of OpenFlow-based SDN network.

10

against flow entries. If a matching entry is found, the switch will process the packet lo-
cally according to the actions in matched flow entry. Otherwise, the switch will forward an
OpenFlow Packetln message to the controller (arrows 2 and 5). The packet header (or the
whole packet, optionally) is included in the OpenFlow PacketIn message. Then, the con-
troller will send OpenFlow FlowMod messages to manage the switch’s flow table by adding
flow entries (arrows 3 and 6), which can be used to process subsequent packets of the flow.
For example, by adding two flow entries (i.e., Entry2 and Entry3) at SW1 and SW2, the
communications between 192.168.100.1 and 192.168.100.2 are allowed. However, packets
from 192.168.100.3 to 192.168.100.2 are denied at SW2 due to security policies.

2.2 Overview Of Machine Learning Algorithms

Machine learning is evolved from a collection of powerful techniques in Al areas. These
methods start from training data to learn useful structural patterns and models. A machine
learning approach consists of two main phases: the training phase and the decision making
phase. In the training phase, after a data mining period that creates a training dataset,
machine learning methods are applied to learn a system model. In the decision making
phase, the trained model is used to estimate the output corresponding to each new input.
Machine learning algorithms can be distinguished into four main categories: supervised,
unsupervised, semi-supervised and reinforcement learning. Each algorithm in Figure [2.3|
is briefly explained with some examples. For a more insightful discussion on machine

learning theory, please refer to [[108, 109, 110].

2.2.1 Supervised Learning

Supervised learning is a kind of labelling learning technique. Supervised learning algo-
rithms are given a labeled training dataset (i.e., inputs and known outputs) to build the
system model representing the learned relation between the input and output. After train-
ing, when a new input is fed into the system, the trained model can be used to get the
expected output [111}, [112]. In the following, an exhaustive representation of supervised

learning algorithms is provided:

1) k-Nearest Neighbor (k-NN): In k-NN the classification of a data sample is deter-
mined based on the k nearest neighbors of that unclassified sample. The process of
the k-NN algorithm is very simple: if the most of the k nearest neighbors belong to
a certain class, the unclassified sample will be classified into that class. The higher

the value of k is, the less effect the noise will have on the classification. Since the

11

\ 2/

vy Yy V¥

Figure 2.3: Common machine learning algorithms.

VY VYV VYY

Machine Learning Techniques

Supervised Learning

k-nearest Neighbour

Decision Tree

Random Forest

Neural Network

Support Vector Machine

Baye's Theory

Hidden Markov Model

Unsupervised Learning

k-Means

Self-organizing Map

Semi-Supervised Learning

Reinforcement Learning

Reinforcement Learning

Deep Reinforcement Learning

RL-based Game Theory

distance is the main metric of the k-NN algorithm, several functions can be applied to
define the distance between the unlabeled sample and its neighbors, such as Cheby-

shev, City-block, Euclidean and Euclidean squared [113].

2) Regresstion Tree: The RT performs classification through a learning tree. In the
tree, each node represents a data feature, all branches represent the conjunctions of
features that lead to classifications, and each leaf node is a class label. The unlabeled
sample can be classified by comparing its feature values with the nodes of the RT

[114]. The RT has many advantages, such as intuitive knowledge expression, simple

12

implementation and high classification accuracy. ID3 [[115], C4.5 [116] and CART
[L17] are three widely-used decision tree algorithms. The biggest difference among

them is the splitting criteria which are used to build decision trees.

3) Random Forest: A RF [118] consists of many RT. To mitigate over-fitting of RT
methods and improve accuracy, the random forest method construct each RT by ran-
domly choosing a subset of the features space . The steps to classify a new data

sample by using random forest methods are:

a) Put the data sample in each tree in the forest;
(b) Each tree gives a classification result (vote);

(c) The data sample will be classified into the class which has more votes.

4) Neural Network (NN): A neural network is a computing system composed by a
large number of simple processing units, which operate in parallel to learn experi-
ential knowledge from historical data [[119]. Each neuron performs highly complex,
nonlinear and parallel computations. In a NN, its nodes are the equivalent compo-
nents of the neurons in the human brain. These nodes use activation functions to
perform nonlinear computations. The most frequently used activation functions are
the sigmoid and the hyperbolic tangent functions. Simulating the way neurons are
connected in the human brain, the nodes in a NN are connected to each other by vari-
able link weights. A NN has many layers. The first layer is the input layer, the last
layer is the output layer and layers between them are the hidden layers. The output
of each layer is the input of the next layer and the output of the last layer is the result.
By changing the number of hidden layers and the number of nodes in each layer,
complex models can be trained to improve the performance of NNs. NNs are widely
used in many applications, such as pattern recognition. In figure the most basic
NN with three layers has been shown. An input has m features (i.e., X1, Xo, ..., X,,)
and the input can be assigned to n possible classes (i.e., Y7, Ys, ..., Y,). Also, W'é
denotes the variable link weight between the ¢/ neuron of layer [and the jth neu-
ron of layer [+ 1, and ak' denotes the activation function of the kth neuron in layer
[. There are many types of neural networks, which can be divided in supervised or
unsupervised main group [120]]. In the following, we will give a brief description of

supervised neural networks.

a) Random NN': The random NN can be represented as an interconnected net-

work of neurons that exchange spiking signals. The main difference between

13

X, a? Y
X, az(z) Y,
Input Layer Hidden Layer Output Layer

Figure 2.4: A basic neural network with three layers: an input layer, a hidden layer and an
output layer.

random NN and other neural networks is that neurons in random NN exchange
spiking signals probabilistically. In random NN, the internal excitatory state of
each neuron is represented by an integer called “potential”. The potential value
of each neuron rises when it receives an excitatory spiking signal and drops
when it receives an inhibitory spiking signal. Neurons whose potential val-
ues are strictly positive are allowed to send out excitatory or inhibitory spiking
signals to other neurons according to specific neurondependent spiking rates.
When a neuron sends out a spiking signal, its potential value drops one. The

random NN has been used in classification and pattern recognition [[121]].

b) Deep NN: Neural networks with a single hidden layer are generally referred
to as shallow NNs. In contrast, neural networks with multiple hidden layers
between the input layer and the output layer are called deep NN [[122,1123]. To
process high-dimensional data and to learn increasingly complex models, deep
NN with more hidden layers and neurons are needed. However, deep NNs in-
crease the training difficulties and require more computing resources. In recent
years, the development of hardware data processing capabilities and the evolved
activation functions make it possible to train deep NNs [124]]. In deep NNs,

each layer’s neurons train a feature representation based on the previous layer’s

14

output, which is known as feature hierarchy. The feature hierarchy makes deep
NN capable of handling large high-dimensional datasets. Due to the multiple-
level feature representation learning, compared to other machine learning tech-

niques, deep NNs generally provide much better performance [124]].

c¢) Convolutional NN: Convolutional NN and recurrent NN are two major types
of deep NNs. Convolutional NN [[125, [126] is a feed-forward neural network.
Local sparse connections among successive layers, weight sharing and pooling
are three basic ideas of convolutional NN. Weight sharing means that weight pa-
rameters of all neurons in the same convolution kernel are same. Local sparse
connections and weight sharing can reduce the number of training parameters.
Pooling can be used to reduce the feature size while maintaining the invariance
of features. The three basic ideas reduce the training difficulties of convolu-

tional NNs greatly.

d) Recurrent NN: In feed-forward neural networks, the information is transmit-
ted directionally from the input layer to the output layer. However, recurrent
NN is a stateful network, which can use internal state (memory) to handle se-
quential data. Unlike a traditional deep NN, which uses different parameters at
each layer, the recurrent NN shares the same parameters across all time steps.
This means that at each time step, the recurrent NN performs the same task,
just with different inputs. In this way, the total number of parameters needed
to be trained is reduced greatly. Long Short-Term Memory (LSTM) [127] is
the most commonly-used type of recurrent NNs, which has a good ability to
capture long-term dependencies. LSTM uses three gates (i.e., an input gate, an

output gate and a forget gate) to compute the hidden state.

5) Support Vector Machine (SVM): SVM is invented by Vapnik and others [128]],
which has been widely used in classification and pattern recognition. The basic idea
of SVM is to map the input vectors into a high-dimensional feature space. This
mapping is achieved by applying different kernel functions, such as linear, polyno-
mial and Radial Based Function (RBF). Kernel function selection is an important
task in SVM, which has effect on the classification accuracy. The selection of kernel
function depends on the training dataset. The linear kernel function works well if
the dataset is linearly separable. If the dataset is not linearly separable, polynomial
and RBF are two commonly-used kernel functions. In general, the RBF-based SVM
classifier has a relatively better performance than the other two kernel functions. The

objective of SVM is to find a separating hyperplane in the feature space to maximize

15

the margin between different classes. The margin is the distance between the hyper-
plane and the closest data points of each class. The corresponding closest data points

are defined as support vectors.

6) Bayes’ Theory: Bayes’ theory uses the conditional probability to calculate the
probability of an event occurring given the prior knowledge of conditions that might
be related to the event. The Bayes’ theory is defined mathematically as the following

equation:
P(E|H)P(H)
P(E)

where E is a new evidence, H is a hypothesis, P(H|E) is the posterior probabil-

P(H|E) =

ity that the hypothesis H holds given the new evidence F, P(F|H) is the posterior
probability that of evidence E conditioned on the hypothesis H, P(H) is the prior
probability of hypothesis H, independent of evidence F, and P(FE) is the probabil-
ity of evidence E. In a classification problem, the Bayes’ theory learns a probability
model by using the training dataset. The evidence E is a data sample, and the hypoth-
esis H is the class to assign for the data sample. The posterior probability P(H |E)
represents the probability of a data sample belonging to a class. In order to calculate
the posterior probability P(H|E), P(H), P(E) and P(E|H) need to be calculated
first based on the training dataset using the probability and statistics theories, which
is the learning process of the probability model. When classifying a new input data
sample, the probability model can be used to calculate multiple posterior probabil-
ities for different classes. The data sample will be classified into the class with the
highest posterior probability P(H|FE). The advantage of Bayes’ theory is that it re-
quires a relatively small number of training samples dataset to learn the probability
model [129]. However, there is an important independence assumption when us-
ing the Bayes’ theory. To facilitate the calculation of P(E|H), the features of data

samples in the training dataset are assumed to be independent of each other [130].

7) Hidden Markov Models (HMM): HMM is one kind of Markov models. Markov
models are widely used in randomly dynamic environments which obey the memory-
less property. The memoryless property of Markov models means that the conditional
probability distribution of future states only relates to the value of the current state
and is independent of all previous states [131}132]. There are other Markov models,
such as Markov Chains (MC). The main difference between HMM and other mod-
els is that HMM is often applied in environments where system states are partially

visible or not visible at all.

16

2.2.2 Unsupervised Learning

In contrast to supervised learning, an unsupervised learning algorithm is given a set of
inputs without labels, thus there is no output. An unsupervised learning algorithm aims
to find patterns, structures, or knowledge in unlabeled data by clustering sample data into
different groups according to the similarity between them. The unsupervised learning tech-
niques are widely used in clustering and data aggregation. In the following, we will give a

representation of widely-used unsupervised learning algorithms.

1) k-Means: The k-means algorithm is used to recognize a set of unlabeled data
into different clusters. To implement the kmeans algorithm, only two parameters
are needed: the initial dataset and the desired number of clusters. If the desired
number of clusters is k, the steps to resolve node clustering problem by using k-

means algorithms are:

a) initialize k cluster centroids by randomly choosing k nodes;
b) use a distance function to label each node with the closest centroid;
c¢) assign new centroids according to the current node memberships;

d) stop the algorithm if the convergence condition is valid, otherwise go back

to step D).

2) Self-Organizing Map (SOM): SOM, also known as SelfOrganizing Feature Map
(SOFM) [133]], is one of the most popular unsupervised neural network models.
SOM is often applied to perform dimensionality reduction and data clustering. In
general, SOM has two layers, an input layer and a map layer. When SOM is used
to perform data clustering, the number of neurons in the map layer is equal to the
desired number of clusters. Each neuron has a weight vector. The steps to resolve

data clustering problem by using SOM algorithm are:
a) initialize the weight vector of each neuron in the map layer;

(b) choose a data sample from the training dataset;

(c) use a distance function to calculate the similarity between the input data
sample and all weight vectors. The neuron whose weight vector has the highest
similarity is called the Best Matching Unit (BMU). The SOM algorithm is based

on competitive learning;

(d) The neighborhood of the BMU is calculated;

17

(e) The weight vectors of the neurons in the BMU’s neighborhood are adjusted

towards the input data sample;

(f) Stop the algorithm if the convergence condition is valid, otherwise go back
to step (b).

2.2.3 Semi-Supervised Learning

Semi-supervised learning is a type of learning which uses both labeled and unlabeled data.
Semi-supervised learning is useful due the fact that in many real-world applications, the
acquisition of labeled data is expensive and difficults while acquiring a large amount of
unlabeled data is relatively easy and cheap. Moreover effective use of unlabeled data dur-
ing the training process actually tends to improve the performance of the trained model. In
order to make the best use of unlabeled data, assumptions have to be hold in semisuper-
vised learning, such as smoothness assumption, cluster assumption, low-density separation
assumption, and manifold assumption. Pseudo Labeling [[134] is a simple and efficient
semi-supervised learning technique. The main idea of Pseudo Labeling is simple. Firstly,
use the labeled data to train a model. Then, use the trained model to predict pseudo la-
bels of the unlabeled data. Finally, combine the labeled data and the newly pseudo-labeled
data to train the model again. There are other semi-supervised learning methods, such as
Expectation Maximization (EM), co-training, transductive SVM and graph-based meth-
ods. Different methods rely on different assumptions. For example, EM builds on cluster
assumption, transductive SVM builds on low-density separation assumption, while graph-

based methods build on the manifold assumption.

2.2.4 Reinforcement Learning

Supervised learning algorithms are generally applied to conduct classification and regres-
sion tasks, while unsupervised and reinforcement learning algorithms are applied to con-

duct clustering and decision-making tasks respectively.

1) Reinforcement Learning (RL): RL [[135,1136] involves an agent, a state space S and
an action space A. The agent is a learning entity which interacts with its environment
to learn the best action to maximize its long-term reward. The long-term reward is
a cumulative discounted reward and relates to both the immediate reward and future
rewards. When applying RL to SDN, the controller generally works as an agent
and the network is the environment. The controller monitors the network status and

learns to make decisions to control data forwarding. Specifically, at each time step

18

t, the agent monitors a state s; and chooses an action a; from the action space A,
receives an immediate reward r; which indicates how good or bad the action is, and
transitions to the next state st + 1. The objective of the agent is to learn the optimal
behavior policy m which is a direct map from the state space S to the action space
A(m : S — A) to maximize the expected long-term reward. From the behavior
policy 7, the agent can determine the best corresponding action given a particular
state. In RL, value function is used to calculate the long-term reward of an action
given a state. The most well-known value function is Q-function, which is used by

Q-learning to learn a table storing all state-action pairs and their long-term rewards.

2) Deep Reinforcement Learning (DRL): The main advantage of RL is that it works
well without prior knowledge of an exact mathematical model of the environment.
However, the traditional RL approach has some shortcomings, such as low conver-
gence rate to the optimal behavior policy 7 and its inability to solve problems with
high-dimensional state space and action space. These shortcomings can be addressed
by DRL. The key idea of DRL is to approximate the value function by leveraging the
powerful function approximation property of deep NNs. After training the deep NNs,
given a state-action pair as input, DRL is able to estimate the long-term reward. The

estimation result can guide the agent to choose the best action.

3) RL-Based Game Theory: Game theory is a mathematical tool that focuses on
strategic interactions among rational decision-makers. A game generally involves a
set of players, a set of strategies and a set of utility functions. Players are decision-
makers. Utility functions are used by players to select optimal strategies. In coopera-
tive games, players cooperate and form multiple coalitions. Players choose strategies
that maximize the utility of their coalitions. In non-cooperative games, players com-
pete against each other and choose strategies individually to maximize their own util-
ity. In the network field, it is often assumed that nodes are selfish. In non-cooperative
games, players do not communicate with each other, and at the beginning of each
play round, players do not have any information about the strategies selected by the
other players. At the end of each play round, all players broadcast their selected
strategies, which are the only external information. However, each player’s utility
can be affected by the other players’ strategies. In this case, adaptive learning meth-
ods should be used to predict the strategies of the other players, based on which each

player chooses its optimal strategy. RL is a widely-used adaptive learning method,

19

which can help players select their optimal strategies by learning from historical in-
formation such as network status, the other players’ strategies and the corresponding

utility. Thus, RL-based game theory is an effective decision-making technique.

20

Chapter 3

RT- and RF-based models of SDN
switched for Priority Queueing

This chapter first describes a SDN Mininet emulation environment that we use to generate
traffic packets (starting from real data patterns) and to retrieve network (feedback) infor-
mation via the SDN controller, thanks to the OF protocol. Then we shown how to use
data collected from such environment to create a predictive model of the switch priority

queueing scheuling.

3.1 Mininet network emulation environment and control
problem

The Mininet environment [[137]] has been used to emulate a SDN network to validate our
methodology in terms of prediction accuracy and control performance. This software runs
a collection of virtual network elements (i.e. end-hosts, switches, routers, and links) on a
single Linux kernel using lightweight virtualization. To generate traffic we used the D-ITG
generator [[138} 139, [140].

For the purposes of this work, various network configurations were tested. Since sim-
ilar results has been obtained on all configurations, it is possible to consider the generic
case as the architecture in Figure which aims to represent a portion of a larger network
where a bottleneck occurs. More precisely, we consider a switch s0 with one input port
and one output port, and a remote controller [62} 68] that dynamically manages the config-
uration of the queues of s0. The input of s0 is fed with an instance of D-ITG generating
stochastic traffic, whose mean value follows the pattern of a real data set (where packets are
differentiated by their ToS - Type of Service - priority index) extracted from two days logs

of a router of a large service provider network. Namely, the original real data set contains

21

Controller

uth)| |y, diy

|
|
|
: Default DSCP Other
\" PORT2 Flow Table Flow Table ,PORT

3 1 W

llllll

S 3 *

“NETWORK nl “

. =7 W QUEUES . ‘5’::

) <

dk) ||
y(k) |

50 g

Figure 3.1: Mininet emulated network architecture.

traffic of a real network incoming from a source geographic area and terminating in a desti-
nation geographic area, and is divided for each value of Differentiated Services Code Point
(DSCP) with a sampling time of 5 minutes [141} 142]]. We recall that DSCP is the modern
definition of the Type of Service (ToS) field, in which the first 6 bits are the Differentiated
Services field that are in common with ToS field, and the last 2 bits regard explicit con-
gestion notification. The ToS field can specify the priority of a datagram and the request
for a low delay addressing, a high throughput or a high reliability service. Following the
implementation of many national service provider networks (see e.g. [143]), we partition
the 8 different values of the DSCP in three classes: the Default class (DSCPs 0, 1, 3), the
Premium (DSCPs 2,4, 6,7), and the Gold class (DSCP 5): to each class we will assign a
single queue, associated with a different priority.

Using D-ITG Sender and Receiver SW modules it has been possible to establish a con-
nection between networks nl and n2. In particular, 16 ITG modules have been initialized:
8 for each network, and within each network one for each DSCP index. These modules
handle the sampling time interval (5 minutes), the inter-departure time stochastic distri-
bution associated with the packet rate, the packet size stochastic distribution, the IP and
port destinations, and the DSCP index. Regarding the controller SW module we used Ryu,
which provides software components with well defined Application Programming Inter-
faces (API) that give the possibility to easily create new network management and control
applications. Ryu supports various protocols for managing network devices, such as Open-
Flow, Netconf, OF-config, etc. About OF, Ryu supports fully 1.0, 1.2, 1.3, 1.4, 1.5 and

22

\DSCP!

N | Flow F——>>|GOLD (PREEMPTIVE) o ouT
12,467 . | HARDWARE QUEUE >
—>| Table F==2Z3 |PREMIUM (80%) 41

Rules {1 01,3 3y, IDEFAULT (20%) q0

Figure 3.2: Static queues rate with routed packets relative to DSCP.

Nicira Extensions. For our test-bed the 1.3 version has been chosen. In particular, APIs
were used for queue control and counter recovery from the switches [[144, [145]. The feed-
back information collected for the purposes of this work are the descriptions of switches,
ports and queues, the number of packets received and transmitted on each port of a switch,
the packets passing through the flow tables, the packet rate values of each queue and the
packets transmitted by each single queue. In summary, the variables associated to the traffic

and control signals in our closed-loop architecture are as follows:

o d(k) € R is a measurable disturbance vector, i.e. representing variables we cannot
control. The first 8 components d;(k), ..., ds(k) consist of the number of packets
incoming in the switch s0 differentiated with respect to the 8 different values of the
DSCPs. dgy(k) and dyo(k) are proxy variables, i.e. the hours and minutes of the
day, which are very useful to the predictive model since traffic dynamics are tightly

correlated with them, e.g. they are substantially different between night and day;

¢ y(k) € R? is the measured output vector, i.e. the variables we want to regulate. They
consist of the number of packets outgoing from switch s0 differentiated with respect
to the corresponding service class: y;(k) is the Default Queue output, yo(k) is the

Premium Queue output and y3(k) is the Gold Queue output;

e u(k) € R? is the control input vector. Each component corresponds to the queue
configuration of each service class: u;(k) is the Default Queue configuration, i.e.
the maximum admitted bandwidth; us(k) is the Premium Queue configuration, i.e.
the maximum admitted bandwidth; u3(k) is the Gold Queue configuration, i.e. the

minimum admitted bandwidth;

In this work we first applied in our emulative scenario the static control of queues used
in the Italian service provider network of Telecom Italia [143l], which is depicted in Figure
[3.2] To this aim we defined 3 queues in s0 and configured the queues as follows: packets
with the DSCP values 0, 1 and 3 (Default queue) are routed via queue 0, with maximum
rate uy (k) = 20MB/s, Vk; the packets with values 2, 4, 6 and 7 (Premium queue) are routed

23

on queue 1, with maximum rate us(k) = 80MB/s, Vk; the packets with value 5 (Gold
queue) are routed on queue 2, with minimum rate ug(k) = 100MB/s, Vk. To obtain this
prioritization it has also been necessary to set the flow tables of s0 to discriminate incoming
packets based on the DSCP value and the destination IP address, and re-route them to the
desired queue. Also, to obtain a bottleneck situation in s0, we have chosen the bandwidth
of the output port of switch sO at 100 MB/s. Using this configuration queue 2 uses the
maximum capacity of the port to forward packets with preemptive priority, while the other
two queues use the remaining bandwidth from 0 MB/s to the specified maximum bandwidth
based on needs. To instantiate the chosen topology in Mininet it has been necessary to run
the code from the Ubuntu command line with the following text:

In this script all network devices (remote controller, switches and hosts), their attributes
and their connections are defined. Furthermore this script is also responsible for the traffic
generated between hosts thanks to the function defined within the code that is itera-
tively used every five minutes to read the provided real data traffic database and generate
the synthetic traffic inside the network. In lines 49 to 53 of [A.§|code Mininet adds an exter-
nal controller, Ryu in our case, to specified IP address and port. Obviously it is necessary
that the controller is already instantiated before launching the network topology, and it is

possible to do this through the following command:

ryu run main_controller_TOS.py rest_qos.py rest_conf_switch.py ofctl_rest.py

This command executes several scripts, the first one is the Ryu controller which
invokes additional functions designed for saving network information and setting queue
bandwidths (from [A.2] to [A.4). The remaining scripts are all the rest APIs required for
these features to work properly (A.3] [A.6]and [A.7] codes).

As we will see in Section [3.3] using static priority control the queues will not be able to

send all the packets incoming from network n1, and a dramatic amount of packets will be
lost. This motivates the application of optimization techniques, which are enabled by the

predictive models derived using the methodology described in section

3.2 Regression Trees and Random Forest based models
for MPC

In this section a methodology to apply the results proposed in [146] [147] is illustrated, to
identify, starting from a set of collected historical data D = {y(k), u(k),d(k)}i_, (gen-

erated as described in the previous section), a switching ARX model of the input-output

24

behavior of the traffic flow in a switch of a SDN network as follows:
J
z(k+j+1)= zljj(a:(k),d(k:))m(k) + Z Br/yj(x(k),d(k)),au<k +a) + f(lyj(:r:(k),d(k))7 (3.1)
a=0

j=0,...,N—1,wherez(k) = [y (k) --- y"(k—6,)u'(k—1) - u"(k—6,)]" € R"™
is an extended state to characterize a switching ARX model, with z, (k) = [y, (k) - - y,(k—
S)ul(k—=1) - u(k—45,)]" € R+ =1 2 3, N is the chosen future predictive
horizon, and o; : R™*% — M C N is a switching signal that associates an operating
mode in a finite set M to each pair (z(k), d(k)) and each prediction step j of the horizon.
It is possible to directly use model (3.1) to setup the following problem, which can be

solved using standard Quadratic Programming (QP) solvers:
Problem 1

minimize ((a:jﬂ — a:ref)T Q (Tj41 — Tyer) + ujTRu])

J
. / / !
subjectto xj4q = Agj(mdo)xo + Z Baj(xojdo),aua + f(,j(mdo)

a=0
quL{
To —.T(k),do —d(k’)
7=0,...,N—1

As it is well known [148]], Problem [1] is solved at each time step k£ using QP to compute
the optimal sequence ug, ..., u}_;, but only the first input is applied to the system, i.e.
u(k) = ug. Note that, for any prediction step j, x;1; only depends on the measurements
xog = z(k),dy = d(k) at time k, since they are the only available measurements at time-step
k.

3.2.1 RT and RF background

Let us consider a dataset {y(k),z1(k),...,z,(k)}_y with y,z1,..., 2, € R. Let us
suppose to estimate, using Regression Trees, the prediction of the (response) variable y(k)
using the values of predictor variables ; (k), . .., 2, (k). The CART algorithm [149] creates
a RT structure via optimal partition of the dataset. It solves a Least Square problem by
optimally choosing recursively a variable to split and a corresponding splitting point. After
several steps the algorithm converges to the optimal solution, and the dataset is partitioned

in hyper-rectangular regions (the leaves of the tree) Ry, Ry, - - - , R,. In each partition y(k)

25

is estimated with a different constant ;¢ = 1, ..., v, given by the average of the samples
of y(k) falling in R;, i.e.

G = {kl(z1(K),..csmn (k) ER; }
| ;|

Random Forests [[150] are instead an averaging method that exploits a combination of tree

(3.2)

predictors such that each tree depends on the values of a random vector sampled indepen-
dently and with the same distribution for all trees in the forest. The output prediction is
given by averaging the predictions provided by all trees in the forest. It is possible to show
that the error introduced by the forests quickly and almost surely converges to a limit as
the number of trees in the forest becomes large. Such error also depends on the strength of
the individual trees in the forest and the correlation between them. Thus, due to the Law of
Large Numbers, Random Forests (differently from Regression Trees) do not suffer much

variance and overfitting problems. For more details the reader is refered to [[149, [150]].

3.2.2 Switching ARX (SARX) model identification via RT

To derive a model as in (3.1)), a new dataset X = {z(k), u(k), d(k)};_, has to be defined
starting from D. In order to apply MPC it is needed, for each component of y(k), a model
that can predict system’s dynamics over a horizon of length N. The idea is to create 3V
predictive trees {7, ;}, ¢+ = 1,2,3, j = 0,..., N — 1, each one to predict the 3 outputs
components of the system over the NV steps of the horizon. To create the tree structure, the
RT algorithm (CART) partitions the dataset X into regions X, such that |+ X; = X, and
assigns to each region a constant value given by the average of the output values of the sam-
ples that ended up in that leaf. In run-time, once the trees are created, and given a real-time
measurement (x(k), u(k), d(k)) belonging to leaf i, the CART algorithm provides as a pre-
diction the averaged value associated to the leaf as in (3.2). However, since the prediction
provided by the RT is a constant value, it cannot be used to setup an MPC problem, thus
the learning procedure needs to be modified to identify a modeling framework as in (3.7).
To this end, X is partitioned in two disjoint sets X, = {u(k)}%_, of data associated to the
control variables, and &,,. = {(z(k), d(k))}_, of data associated to remaining variables,
and then apply the CART algorithm only on &/, (this is to avoid that the MPC problem
turns out into a Mixed Integer Quadratic Program, see [[146, [147] for details); thus, 3N
RTs {7, ;} have been created, each constructed to predict the variable y,(k + j + 1), and

26

consequently z,(k + j + 1). In particular, it is associated to each leaf ¢, i;, corresponding

to the partition X, ;., of each tree 7.,; the following affine model is associated

v (k+j+1)= +ZBLW (k+a)+ f,,. (3.3)
a1 az -+ oas, as,41 bs,r2 0 bsritse.-1) vt bs,ti43e, |
1 0 --- 0 0 0 ... 0
Do : : 0 0 0
0 0 1 0 0 0 0
A 0 0 0 0 0 0 0
Lig L0 0 0 0 0 0 0 ’
0 O 0 0 0 0 0
0 0 0 0 1 0 0
L0 o 0 0 0 1 0 |
[bl,a bQ,a bS,a i [bl,oz b2,o¢ b3,a | [f i
0 0 0 0 0 0 0
0 0 0 0 0 0 0
/! . 0 O 0 / 1 O 0 / . 0
By 0o 0o o [P Bui=| o 1 o |"laT 0|
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 | 0 0 0 | 0
(3.4)

where the coefficients of matrices A;; , B,; , and f/; are obtained in each leaf ¢,i; by
)lj

fitting the corresponding set of samples solving the following Least Squares with inequality

constraints problem:
Problem 2

minimize || A, ;&q — Mo, B

L,ij

subject t0 fuin < [< fmax
Gmin S a, S Omax (35)

bmin S bL,a S bmaxa

where £, ;., A.;;, and AM»J. contain respectively the parameters of matrices in (3.4), the

predictions z,(k + j + 1), and the current measurements of (k) and u(k + «). Linear

27

inequalities (3.3)) are used to constrain elements in §, ;, to take into account physical system
constraints and improve prediction accuracy. Model (3.3) can be easily compacted in the

following form taking into account all the states ¢ = 1,2, 3:
w(k+j+1) = AL a(k)+ > Bf ulk+a)+ fl . (3.6)

In particular, with the specific choice of §,, = 0 model (3.1)) can be rewritten in the following
state-space formulation

2(k+741) = Ao @0 0,a) T E+) + Boaom),um 0,a00) Wk +) + fo)= 1).d09)-

3.7
where u™ (k) = [u"(k — 1) --- u'(k —9)]" is the vector with the regressive terms of the
input used to only grow the trees, and o; : R3O +1+39+10 _ Af C N. Thanks to this new
formulation the following proposition shows that model is equivalent to model

for any initial condition, any switching signal and any control sequence.

Proposition 1 [[/47] Let A;j, ng,a and fz-’],, a=0,...,7,7=0,...,N — 1, be given. If

A;j is invertible for 7 = 0, ..., N — 1, then there exists a model in the form
T(k+7+1) = Ag@k),uk).ae) T(k + J)+ Bo, @ (k)0 k),dx) WK + J)+ fo, @k u- (k).d(k))

= x(k) = x, any switching sequence iy, . .., in_1
and any control sequence u(k),... ,u(k+N —1), thenz(k+j+1) =x(k+j+1), Vj =
0, N—1.

such that for any initial condition z (k)

As discussed in [[147], from experimental findings it is possible to notice that the con-
tribution in terms of model accuracy introduced by the choice of §,, = 0 is negligible, since
previous control inputs are already considered in the tree structure choosing 6 > 0. Thus,
in the rest of the thesis it will be considered ,, = 0 and § > 0, i.e. only the regressive terms

of the input in the tree structure learning will be used and not in the state definition.

3.2.3 SARX model identification via RF

RF-based models can be constructed exploiting the RT-based formulation: in particular, let
us consider 3N RFs F,;, ¢t =1,2,3, j =0,..., N — 1. For each tree 777 of the forest
F.;, it is possible to estimate the coefficients a,, b, and f in for each leaf ¢, j,17,,
ie. {;tL,j,iT, solving Problem [2| With a small abuse of notation, let us indicate by |F, ;| the

28

number of trees in the forest ¢, j. Then V¢, j, the parameters to build matrices in (3.9) can

be obtained by averaging parameters a,, b, and f,Vr =1,...,|F, |, i.e.
IFusl
5 Z §L Iyt
§j= ; (3.8)
T If Jl

over all the trees of forest F, ;. At this point, starting from (3.3), it can be easily construct
the following model, as in (3.6) to be used in the MPC formulation by combining for
v = 1,2, 3 the matrices in (3.4) coming either from the RTs or from the RFs:

w(k+j+1)= +ZB u(k+a) + fi . (3.9)

3.2.4 MPC problem formulation.

Model (3.9)) is used to formalize Problem || according to the SDN priority queueing prob-

lem:

Problem 3

N
minﬁnize Z [(a:jH — Tretj) Q(Tj11 — Trerj) + ujTRuj

=0
subjectto xj 1 = Ag;(0)T; + Boyu; + fo;)

Aui“in <y — o1 < Au™

U < gy, <
uy,; + ug; < 100
vo = o(k), ug = [u(=1) -+ uT(=6)]T, do = d(k),
7=0,...,. N—1,1=1,2,3,

where o;(k) = o;(x(k),u”(k),d(k)) (with a slight abuse of notation), u, ; is the . com-
ponent of the input v at time & + j; Au™" and Au™* are used to limit large variations on
the inputs in 2 consecutive steps, in order to avoid that the queues drastically set to the mini-
mum value and thus potentially increase packet losses during the next period; u™" and u™*
define the bandwidth limits induced by the QoS requirements of the corresponding priority
class. At each time step k the measurements of the variables in &, are collected, select
the current matrices of (3.9) narrowing down the leaves of the trees, for j = 0,..., N — 1,
solve Problem (3), and finally apply only the first input of the optimal sequence u* found,

ie. u(k) = uf.

29

3.2.5 Disturbance forecast

The knowledge at each time k of the future input traffic (d(k + 1),...,d(k + N — 1))
can greatly improve the MPC performance. However, while the future values of the proxy
variables (hours and minutes) are clearly well known, the knowledge of the future val-
ues of the first 8 component of the disturbance, i.e. number of packets incoming in the
switches for each DSCP index are unknown at the current instant k. To address this prob-
lem 8(N — 1) RFs F,

a prediction d,(k + j) of the 8 disturbance components d,(k + j) over the future time

t=1,...,8, 7=0,..., N —1 have been built in order to provide

horizon: as widely illustrated in [[146, [147]] the technique previously described can be eas-
ily modified by appropriately redefining the dataset as X = {(z(k), u(k),d(k),...,d(k +
N — 1)) }¢_, for the training phase, and considering a switching signal in (3.7) given by

oj(k) = oj(z(k),u”(k),d(k),d(k +1),...,d(k+7)),¥j = 0,...,N — 1, i.e. also de-

pending at time k on the future input traffic.

3.3 Simulation results

In this section simulation results of the application of the proposed approach to SDN Prior-
ity Queueing identification and control will be provided. Standard RFs are used to derive
predictive models of the disturbance components d; (k), ..., ds(k), i.e. the switch input
differentiated for each DSCP index, and validate the accuracy. Then the validation of accu-
racy of the predictive model of the output variable y (k) derived as illustrated in Section
is shown: the predictive models (based on RTs and RFs) will be compared with Artificial
Neural Networks, showing that RFs represent the ideal solution both in terms of predic-
tion accuracy and computational complexity; then the effect of iterative dataset updates in
the prediction accuracy is illustrated, both with and without prediction of the future dis-
turbances. Finally the proposed predictive models will be used to setup a MPC problem
(see Problem [3), and validate the control performance in terms of packet losses reduction
and bandwidth saving, both with and without prediction of the future disturbances. It will
also be shown, as expected, that using accurate predictive models and applying MPC pro-
vides dramatic reduction of packet losses and increase of bandwidth saving with respect to
the static bandwidth allocation policy used in Service Provider Networks as described in
Section [3.1} even thought this result is not surprising, it is decided to quantify the gap to
emphasize that much better performance can be obtained in real networks just collecting
historical data and applying a controller that can be directly implemented using the accu-
rate models of the proposed identification algorithm and Quadratic Programming solvers

(which are well known to be very efficient).

30

In each of the aforementioned validations, 4 different predictive models have been ex-
ploited, using iteratively enriched data sets. More precisely, OLD is a predictive model
identified with a data set of 5124 samples, collected with a sampling time of 5 minutes and
obtained from network emulation with random values of the input u(k); 1UP is a predic-
tive model identified with the OLD data set enriched with 3456 new samples obtained from
network emulation when applying closed-loop MPC to define the input u(k); 2UP is a pre-
dictive model identified with the 1UP data set enriched with 3168 new samples obtained
from network emulation when applying closed-loop MPC to define the input u(k); 3UP is
a predictive model identified with the 2UP data set enriched with 6336 new samples ob-
tained from network emulation when applying closed-loop MPC to define the input u (k).
An independent data-set composed by 1684 samples is used to validate the above models.
All simulations have been ran on a UDOO x86 Advanced with an Intel Braswell N3160
processor up to 2.24 GHz and 4 GB of RAM [131].

3.3.1 Disturbance predictive model validation

Having an accurate model of the variable d(k) (i.e. the switch input differentiated for each
DSCP index) can be helpful to improve the model identification performance as well as the
reference input z. to follow in Problem[3] In this section we apply standard RF algorithms,
with a regressive index of 15 steps and 30 trees for each forest, to obtain a predictive model
of the disturbance over a predictive horizon of N = 5 (25 minutes): this choice of /N has
been taken considering the tradeoff between time complexity of the identification algorithm
and the obtained identification accuracy.

Figure [3.3| shows the Normalised Root Mean Square Error (NRMSE) of the predictive
model of the disturbance signals (one for each of the 8 DSCP indices) over a time horizon
of N = 5: the prediction error is worse for Service 0 (4 —6%) since it includes the majority
of the packets that transit through the switch. For other services the NRMSE is at most
2.2% (Service 7) over all the predictive horizons. The improvement of the model accuracy
when using larger (updated) data sets is evident, until a saturation is reached and further
data do not help to improve the model accuracy: the NRMSE significantly reduces and
for Service O it is even halved. Figure plots, for Service 0 and in a time window of
500 samples (almost two days), the predictions of OLD, 1UP, 2UP and 3UP as well as the
original data, and clearly highlights the better prediction of 2UP and 3UP with respect to
OLD and 1UP.

31

-#-0LD
6 Error Service 0 - e -iup Error Service 1
N ST -e-2up w ‘
: _________ e--=---=-"" 1 - & -3UP 2r PO e======cc— 4
3 4
Error Service 2
#--m==zzzIgIIzz====-4
3 4 5
Error Service 4
s ;:::::::::;:::::::::
1 2 3 4 5
15 Error Service 6
1 I S p——— e S !
Y% | oo-mmmT *
05F .. e |
0EEEEE:::::*:::::::::;::::::::‘c
1 2 4 5

Figure 3.3: NRMSE of the disturbance predictive model over a time horizon of N = 5.

x10° Prediction Service 0
I I I

I
—OLD
—1UP
35 —aup .

—3UP
REAL DATA @
3 h\ .

N
3

A #Packets

N

1.5

800 850 _IQ_OO 950 1000 1050 1100 1150 1200 1250 1300
ime

Figure 3.4: Comparison between the real traffic (YELLOW LINE) and the traffic prediction
for the different models for Service 0.

32

3.3.2 Queues predictive model validation

In this section we first compare the accuracy of our predictive models with Artificial Neural
Networks. We recall that a neural network is a collection of algorithms that aim to identify
underlying relations in a dataset: it consists of groups of connected neurons organized in
layers, where the connections between neurons are modeled using weights. The signal pro-
duced with this linear composition is then fed into an activation function that is in general
nonlinear. The reader is referred to [[152] and references therein for more details. A wide
number of tools to build Neural Networks have been developed during recent years, e.g.
[153, 1154, 1535]] just to mention a few: in this work we exploit the Deep Learning Toolbox
of Matlab to compare predictive models based on NNs with the methodology proposed
in this work, based on ARX combined RTs and RFs. We consider here just OLD as the
learning dataset and chose a predictive horizon N = 5.

To identify a RT (resp. RF) based predictive model of the queues we trained a Re-
gression Tree (resp. a Random Forest) for each output and for each time horizon, with a
total of 15 trees (resp. 15 forests each consisting of 30 trees). The main parameters used
for the identification algorithm (see Section and Problem [2) are summarized in Table

In particular, the regressive terms (d4, 9., ,,) and the minimum number of samples

Table 3.1: Identification parameters

Parameters Value Parameters Values

N 5 Smin -100
1% 1 f max 100
O 5 Armin -100
Ou 5 Umax 100
0q 5 bomin 0
Minleaf 13 bimaz 10000
| Fis] 30

for each tree of each forest (MinLeaf) have been chosen, with a trial and error approach,
considering that very small regressive horizons and very large values for MinLeaf may lead
to inaccurate prediction (as they do not provide sufficient information on the past) but very
large regressive horizons and very small values for MinLeaf also lead to inaccurate predic-
tion (as they interpolate very old data that might negatively affect the results and produce
overfitting).

Regarding specific parameters used for running NN, and for the sake of a fair compar-
ison, we tuned them to obtain the best performance: in particular we considered shallow

networks of 2 layers since depper networks did not improve the accuracy and, instead,

33

have the negative effect of increasing the sensitivity of the accuracy with respect to the
initial conditions of the weights. Among the many algorithms for optimizing the weights
of the neurons we exploited the Scaled conjugate gradient back-propagation described in
[[156]], which provided the best accuracy with respect to our dataset. Regarding the acti-
vation functions, we used both the classical sigmoid function (LogSig) and the Hyperbolic

tangent sigmoid transfer function (7anSig).

ueue 0
20 NN logsig Q
=2~ NN tansig) ——]
T 4
> —- RF ____.=========:===:=======-= ---------------------- o=
9 —emz=E =TT
0 0gememems=r="=""" e] |
5 e — p-— ‘ |
1 2 3 y .
Queue 1
15+
10+ _ 1 | |
% s
=TT TP D G -
0 \ ‘ ‘ ‘
1 2 3 A .
30 Queue 2
20+
% 10&
SR e e e e e N T T T e ebepentete 3
0 \ ‘ ‘ ‘
1 2 3 A .
N

Figure 3.5: NRMSE, up to N = 5 and for each priority class, for RT (blue), RF (red), NN
with sigmoids as activation function (yellow) and NN with hyperbolic tangent as activation
function (black).

As a metric of the prediction accuracy we compared in Figure 3.5/the Normalized Root
Mean Square Errors (NRMSE) of the different identification approaches for each priority
class and over a horizon up to N = 5. Regarding queue 0 (Default) NNs perform better
than RT and REF, but in queues 1 (Premium) and 2 (Gold), characterised by higher priority,
RF provides the best performance. Queue 0 is characterised by a larger NRMSE with all
identification techniques: this is due to the fact that, having the lowest priority, it suffers
more packet losses and this can negatively affect the prediction accuracy. Our validation
emphasizes that RTs, even thought very simple and fast to compute, are often affected by
overfitting and variance issues, i.e. small variations of the training data result in large vari-
ations of the tree structure and, consequently, of the predictions. Regarding NN, they pro-
vide a less accurate model in 2 cases over 3. Indeed, by analyzing the dataset distribution

(see Figure [3.6), we noticed a peculiar regular grid pattern that can be very well approxi-

34

mated by hyper-rectangles: since RTs and RFs base their prediction on hyper-rectangular

dataset partitions, the better performance with respect to NNs is reasonable. For queue 0,
X, as function of X, and X,

god Qg
Q g

8

,,,\,
60000
wog
o %8
g0 0
o
o)
o

°

o

&
D@

X, as function of x, and x X5

ool
x éo 3o o o
I3
gﬁpo O;oo o e) ° °

i X
X, as function of x_ anod X, 1

@0& g

%0

Q

88

%o

o

ol ® o
o
o
o
o
q

Figure 3.6: Grid pattern emerged from dataset distribution.

even thought NNs perform better, we need to remark that their predictive model is based
on nonlinear functions: this makes the derived model impractical for real-time control as
the corresponding MPC formulation turns into a nonlinear optimization problem, for which
there is no approach that can guarantee neither a global optimal solution nor a reasonable
computation time. In addition to this, even obtaining a closed mathematical form of the
predictive function of a Neural Network starting from neurons and weitghts is not always
an easy task, because of the highly nonlinear interconnections between the different layers.
For all these reasons we decided to only use from now on RF-based models, which provide
the best choice both from the accuracy and the computational complexity points of view. In
the following we illustrate the effect of iterative dataset updates in the prediction accuracy,
both with and without knowledge of the future disturbances.

Figure and Figure [3.8] plot the NRMSEs respectively without and with knowledge
of the future disturbances. The assumption of future disturbance forecast, as expected,
provides much better prediction accuracy. The positive effect of updated data sets is also
clear, providing accuracy improvements up to 50%: as will be also discussed in the next
section, the most relevant prediction accuracy improvement takes place moving from OLD
to 1UP or from 1UP to 2UP, while the 3UP model does not improve much.

Remark 1 We wish to highlight that in our simulations we generated data without major

modifications of the traffic daily pattern: for this reason enriching the data set converges

35

NRMSE on Queue 0
I

-~

15 20
1
o
—
w)

Figure 3.7: NRMSE of the queues output predictive model over a time horizon of N = 5,
without knowledge of the future disturbances

o |oo oLb NRMSE on Queue 0
Qo -= 1UP :
o || 7T euP
~ [1-*=3UP i ammmmmmmmmm == m ==
Lo ettt tin A S |
0,
/°mf S
g =======zs=======g============S=S===ESZZZZZZZIZC-C-C-C-C-CI-C-$C-C-ICIIZCZCCICIIZIZZZCZCE
o | | |
1 2 3 4 5
NRMSE on Queue 1
______ F---—~—~-~-—-~-~-~-~-~----—F- - - - -
o= R]
L) i
% — __—_-__—_-_:
723 DS QU it ittt S |
©f=zz=zzzzzzzzz=z=z=zz=gz=======zz:zz:2:2:2:2:2:% & ------ZzZzZzZz=z====4===SZIZZZZZZIZIZIZZC2C
o:::::::::::::::._? _________________ ¢-=Zz=z==-=-======-= 3‘
1 2 3 4 5
3 NRMSE on Queue 2
T
2 _______._________-———————°—"""_—_ oA
0 e SRR L bbb |
’—__—___--:::::-—o ----------------- bt S fliufuufuufuiupupupupupupupet
0::::::: __________ 3z-z===zzz======Es i :
1 2 3 4 5
N

Figure 3.8: NRMSE of the queues output predictive model over a time horizon of N = 5,
with knowledge of the 4-steps future disturbances

to a saturation of the model accuracy, as discussed above. Nevertheless, the capability of

our methodology to iteratively learn from new data is fundamental as, in real life, changes

36

in the traffic patterns do occur, and model updates are necessary to maintain the model

accuracy and the control performance.

3.3.3 Control performance

In this section we setup a control loop where the (Mininet) network emulator and the (Ryu)
controller run in two different computers, and synchronize/exchange data using a shared
file. Namely, our SW controller module is, in principle, ready to be directly used on a
real SDN-based network, with just some minor modifications in the data exchange with
the switch devices. The controller implements MPC using the predictive models validated
in the previous sections: at each time step, it solves Problem |3| and optimally updates the
bandwidth of the different queues. The cost matrices () and R of Problem [3| respectively
weight the output y(k) of the system (i.e. the packet transmission rate for each queue) and
the control input u(k) (i.e. the bandwidth assigned to each queue). Since R is required
to be positive definite but it makes no sense assigning a penalty to the choice of u(k), we
define R = 107° - I, where the identity matrix I multiplies a very small value. Matrix
Q = diag(1,10% 10) has been assigned as a diagonal matrix, where the choice of the
different diagonal components is related to the priority level of each queue. The remaining

constraints of Problem [3] are reported in Table[3.2] In what follows we validate the control

Table 3.2: Constraints in Problem 3]
Parameters Value Parameters Values

INT 1 Au 30
Augin 20 Auy™ 30
Ay 20 Aup™ 20
umin 10 u™ 45
uin 55 upex 80
ugn 80 up™™ 100

performance both without and with knowledge of the future disturbances. The value of x,.¢
in the optimization problem represents the reference value we chose for tracking system
output: indeed, as we wish to minimize packet losses, we minimize the difference between
the packets received by the hosts d(k) and those transmitted by the queues y(k) over the
horizon N. In case we have no knowledge of future disturbances, we consider z..s equal
to the current disturbance measurement d(k) and constant over all the predictive horizon;
if instead we have knowledge of future disturbances, we consider x,.; equal to such future
disturbances. In this section we decided to only compare models OLD, 1UP and 2UP, since

model 3UP does not provide any substantial improvement.

37

%10’

2
—OLD
—1UP
15 —2UP]
2
(O]
X
[&]
© 1 .
o
=
<
0.5~ i
—
—
0 4 _—’\f \ \ \
0 200 400 600 800 1000
Samples

Figure 3.9: Cumulative Packet Losses without knowledge of the future disturbance.

4 ><‘IO6‘
—OLD
35H—wp g]
—2UP [oo
L 1 < T e — : .
f2) SQUP, gl PIITIIIIIII
©25 ror =d (k) |
X
8 2]
o
q 1 5 [|
1F |
0.5---]

0 | | | |
0 100 200 300 400 500 600 700 800 900 100011001200
Samples

Figure 3.10: Comparison between Cumulative Packet Losses with (solid lines) and without
(dashed lines) knowledge of the future disturbance.

Figures [3.9) and [3.10] plot the cumulative packet losses respectively without and with
knowledge of the future disturbances. The packet loss rate when the control is performed

exploiting the OLD model and without disturbance forecast is around 123% larger than all

38

other cases (and, of course, incomparably smaller than the static control case [143]). It is
also clear from the plots that 1UP and 2UP without disturbance forecast and OLD, 1UP and
2UP with disturbance forecast provide very similar performance. Our interpretation is that
OLD models without disturbance forecast have not enough information to provide good
accuracy, but they can be easily improved either with a data set update (which however
requires 10 days for 1UP and 20 days for 2UP of additional data) or using a predictive
disturbance model.

Figure [3.11] illustrates the bandwidth savings showing the recurrence of the different
bandwidth usage during the simulations, respectively without and with knowledge of the
future disturbances. Without disturbance forecast we exploited up to 25M B/s using the
OLD model, while we exploited at most 22M B/s and 21 M B/ s respectively for models
1UP and 2UP. Using disturbance forecast, as expected, even less bandwidth is exploited.

We conclude this thesis by quantifying the gap between priority queueing control per-
formance of MPC, obtained solving Problem [3|and based on our RF predictive model, with
the static control policy adopted by service provider networks in [143]. Figure [3.12]high-
lights the dramatic improvement of MPC with respect to static control: the red line shows
the incoming traffic, the blue line shows the sum of the packets sent from the queues,
and their difference represents packet losses. Until the 400th static control has been im-
plemented as in [143]], generating many packet losses due to queues saturation. From that
sample to the end of our experimentation we implemented MPC using our RF-based model,
drastically reducing packet losses: quantitatively, after 700 sampling periods the cumula-
tive number of dropped packets with the static policy is about 5.5 - 108 versus 6.6 - 10° with
MPC, with a decrease of 5.434 - 10® lost packets (—88%). We remark that, even thought
the improvement of MPC with respect to static control is not surprising, much better per-
formance can be obtained in real networks just collecting historical data and applying a
controller that can be directly implemented using the accurate models of our identification

algorithms and Quadratic Programming standard solvers.

39

N w
o o

Recurrence [%]
=

15

20
Bw [MB/s] 25

(a)

= A NN
o O

o o1 O O

Recurrence [%]

2UP

10 1UP
15

Bw [MB/s] 20
(b)

OLD

Figure 3.11: Bandwidth saving comparison without (a) and with (b) knowledge of the
future disturbances.

40

w
o

----- Transmitted

3-——Recewed
O . A.;
S 2.5 [‘.w' A ilpl !'(.) sl ‘
X {I.! i‘ i} |
2 2- o .
S B i
n“_’15— 1 :

H g iy i IR
SRR SRR

0 100 200 300 400 500 600 700 800
Samples

Figure 3.12: Static controller up to the 400¢%, then MPC controller.

41

900

42

Chapter 4

RT- and RF-based predictive models of
multi-service traffic in a real Service
Provider Network

This chapter shows how to apply the methods presented in Chapter [3|to derive a predictive
model of multi-service traffic in a real network with dedicated hardware. We finally validate
the performance of the derived predictive models on the traffic obtained from an Italian

internet service provider (Sonicatel S.r.1.).

4.1 Control performance validation over dedicated hard-
ware network

Given the limitations of the Mininet software, it has been decided to test the previously
explained algorithms on a real network. Due the fact that the SDN network devices are
much expensive, it has been choosen to take an intermediate step in which each device
is associated with a dedicated hardware (unlike Mininet, where multiple virtual devices
shared single hardware resorces). The used architecture is shown in Figure {.1| where
two Raspberry pi 3 [157] have been used has hosts connected on a single switch. The
SDN switch resides in a third Raspberry, where the firmware of an OVS has been installed
and two ethernet/usb adapter have been used as ethernet ports (ethl and eth2) to connect
the hosts. The built in ethernet port (ethO) has been used to connect the SDN controller
(RYU) to the switch. An Arduino UNO with a DS1307 module has been used to share
single time schedule from the controller to the hosts. By using the python script in
it has been possible to iteratively update the time on DS1307 module every hour, then
each raspberry can update its internal time by asking the time to module via I2C' serial

communication. Every update is performed in different minutes of the same hour to avoid

43

Controller
169.254.150.83

Time Allignement
eth0
N
OvS
s Open VvSwitch
Sves veve vees . ,

eth2 eth1
Y etho | | etho 5\;'.*"'
-l]

Host1 —— Host2 ——
169.254.158.19 169.254.207.222

Figure 4.1: Network architecture with dedicated hardware devices.

collisions caused by multiple requests. This time sharing has been necessary to ensure
time synchronization between traffic generation and data harvesting. In a real network
the time synchronization is ensure to internet time sharing. Even in this environment a
Ryu controller has been used as SDN controller with the same Python script previously
described for the Mininet network (e.g. [A.2] [A.T] and [A.3). The custom flow table rules
are set after the deployment of the controller and after the join of the switch by a single

run of the code in [B.4] With this operation we have the default set up as in section [3.1]
(e.g. three queues on port 2 with a bandwidth of 100M bps and 20% of port bandwidth for
queue 0, 80% of port bandwidth for queue 1 and 100% of port bandwidth for queue 2).
While for the Mininet emulator we had a single code in which both the network topology
and the traffic generation of each host were present (e.g. [A.8)), in the case of dedicated
hardware it was necessary to write a new Python script that included the generation and
reception of traffic and infinitely run it on the two Raspberry, which act as hosts. The
code [B.T] contains two different threads: the first one is very similar to the part of code
contained in[A.§|for the generation of the traffic, the only difference is the IP address of the
hosts. The second thread is very simple and is needed to start the DITG Receiver module
on each host. After some tests it has been possible to see that in the hours characterized
by a larger number of packets incoming in the switch the computational capacity of a
Raspberry pi 3 is not sufficient to elaborate all the necessary operations to route the packets
to the hosts. Thus it has been decided to send packets only from Host2, with IP address
169.254.207.222, to Host1, with IP address 169.254.158.195. With this traffic generation

no anomaly was found on the information obtained from the OF counters as showed in

44

Figure 4.2(a). This figure shows packets coming into the switch generated by Host2 (blue
line) and packets outgoing from port 2 of the switch to Host1 (red line), in case the MPC
control policies explained in Section are applied with the same mathematical model
used in Section[3.3.3] This figure makes it clear that the traffic generation is different than
the traffic generated by virtual hosts in Mininet. In particular, in the last hours of the day
it is possible to notice a larger traffic peak than in the emulation environment, as shown
in Figure 4.2[b). This is probably caused by sharing multiple network devices on a single
hardware, which decreases the performance of each network element. With this traffic
generation differences is difficult to compare the results obtained from those environment.
Due the chosen limitations of the queues bandwidth it has been possible to see in Figure
M.2{c) that the amount of packets transmitted from the controlled port is about the same
between the two network setups, even after one model update like the one explained in
Section[3.3] This last very important result demonstrates how it is possible to use a virtual
network to train a mathematical model aimed to controlling some device features and then
apply this controller to a likely real network while maintaining the same traffic profile.
Furthermore, another interesting aspect that emerges from these data is that even after an
update of the control model, therefore after adding a traffic profile different from the one
already present, the overall behavior of the queues remains practically unchanged. This set

of results paves the way for experimentation on real networks.

45

o]

—RECEIVED

—SENT

A #Packets
n w H (6)]

—_

0 200 400 600 800 1000 1200
Samples

(a)

o

[e2)

A #Packets
n w S (6)]

—_

0 ‘
0 200 400 600 800 1000 1200
Samples
(b)
x10°
25 sy
--'SIM 1UP
2 —REAL i
-- REAL 1UP
L15- 1
[}
©
o
4 il
4
0.51 7
O L L L L L
0 200 400 600 800 1000 1200
Samples
(©)

Figure 4.2: Packets that transit inside the switch (a), comparison between packets incoming
in the switch in emulation environment and in dedicated hardware (b) and sum of packets
sent by the switch port with different control model (c).

46

4.2 Traffic predictive model validation on Italian Internet
provider network

In addition to the validation of our predictive models of the incoming traffic over the
Mininet environment and dedicated hardware devices network, the accuracy has been also
tested on data measured from a real network device (Ubiquiti EP-16) of an Italian internet
provider (Sonicatel S.r.l.). Data collection has been performed using the software Cacti
[158].

15 —o—Received

Figure 4.3: NRMSE of the packets predictive model over a time horizon of N = 10.

Since this device is part of a running commercial network, some constraints in data
collection have forced to only measure the sum of all packets entering and leaving the
device, and it has been possible to extract from such traffic only incoming VOIP packets:
i.e., it has not been possible to extract packets differentiated for each DSCP. Moreover, it is
not currently possible to apply any type of closed-loop control on the network device. For
the above 2 reasons the control performance has not been validated.

About data analysis, 53 days of data measurements have been used for RF training and
about 3 days for model validation. Figure shows the prediction on three classes of
packets: all packets received, all packets transmitted, VOIP packets received. The plots

47

show that our methodology provides a very accurate prediction even on a real internet
service provider network.

After few months it has been possible to extend our trained model, using a total of 26138
samples, with the same method previously explained in section[3.3] This model has been
validated on a test of 19144 samples, i.e. on more than two months of measurements. Even
though the test pool is so large, thanks to the variety of train data it has been possible to

obtain very low error values on packet prediction, as shown in Figure

15 —o—Received
10 - T T -
% 5 // . T -
0. | | | | | | | |
1 2 3 4 5 6 7 8 9 10
15 —o—Trasmitted ‘ l ; e * —+
10 - -
%
5 L —
[
0 | | | | | | | |
1 2 3 4 5 6 7 8 9 10
15 —e—vop| | \ \ \ \ \ T T
10 - -
% ?) —
5‘* -
0 | | | | | | | |
1 2 3 4 5 6 7 8 9 10

N

Figure 4.4: NRMSE of the packets predictive model over a time horizon of N = 10 after
one data update.

At a later time Sonicatel S.r.l. needed to move the monitored device to another location
on their network by connecting different users with different contracts and therefore with
different traffic profiles. This has been a great opportunity to validate the proposed method
as it has been possible to test the network device computed model with a traffic pattern
totally unrelated to the training data-set. This test could lead to two conclusions:

1) The prediction error could have been too large and a new long training period would
have been needed;

2) The prediction error could be comparable to the prediction of the previous model and
therefore there would be no need for further updates.

The final result is halfway between the two expectations. In fact, on a test of 846 samples

48

(about 3 days) with new setup data and the same model used for prediction in Figure {.4]
excellent results has been already obtained for Received and Transmitted packets (5% and
7.1% of NRMSE respectively) and sufficient results for the Voip (12% of NRMSE). Figure
M4.3]shows the prediction error for N = 1 for different models. The case just specified is the
one with the null abscissa, that is the model trained with the old setup data. For the abscissa
equal to 1 we have an update of the old model with 1 day of new data (about 288 samples).
For the abscissa equal to 2 there is an update of the old model with 2 days of new data and
so on for the other values up to 9 updates. As can be seen from the error trend compared to
the model updates, very low prediction errors has been obtained already after adding a day
of data to the initial model. This very important result indicates how it is possible to adapt
the predictive model for a network device. Furthermore, combining the results of Chapter [3|
it is evident that this technique would allow an optimal control of the device, guaranteeing

QoS without the need to increase the characteristics of the network hardware.

10 —o—Received

o
-
N — 6
[Co I =
>~ -0
o - ¢
(>R]
N
o — e

L
%5 ‘\‘\A

PN SSE——

0 ! ! ! ! ! ! ! !

0 1 2 3 4 5 6 7 8

20 —e—vop| | \ \ \ \ I I I

‘\
%10 * o ° —o— ° o

-— ® ° o TS — |

0 ! ! ! ! ! ! ! !

0 1 2 3 4 5 6 7 8

Updates

Figure 4.5: NRMSE of the packets predictive model at prediction horizon of N=1 with
different updated models. Every update add 288 samples (about 1 day) to the previous
model training data.

49

50

Conclusion

In this work a new methodology to derive accurate models for priority queueing in Software
Defined Networks, in order to enable the application of advanced optimization techniques
such as MPC, has been developed and validated over the Mininet network emulator frame-
work and over a dedicated hardware network. The obtained results validate the prediction
accuracy both of the incoming traffic and of the input/output behavior of a switch device
in a SDN-based network. They also provide promising insights on the potential impact of
predictive models combined with MPC in terms of packet losses reduction and bandwidth
savings. Furthermore, it has been shown that this method obtains excellent prediction re-
sults on data coming from a real network of an Italian internet provider (Sonicatel s.r.1.),
proving that the proposed control would be very useful to current communications net-
works to guarantee the required QoS. In future work it has been planned to validate the

proposed controller over real network devices, instead of using Mininet.

51

52

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

M. J. Neely, Stochastic network optimization with application to communication and
queueing systems, Synthesis Lectures on Communication Networks 3 (1) (2010) 1-
211.

O. Lemeshko, T. Lebedenko, A. Al-Dulaimi, Improvement of method of balanced
queue management on routers interfaces of telecommunication networks, in: 2019
3rd International Conference on Advanced Information and Communications Tech-
nologies (AICT), IEEE, 2019, pp. 170-175.

D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
S. Uhlig, Software-defined networking: A comprehensive survey, Proceedings of
the IEEE 103 (1) (2015) 14-76.|do1:10.1109/JPROC.2014.2371999.

P. Amaral, J. Dinis, P. Pinto, L. Bernardo, J. Tavares, H. S. Mamede, Machine Learn-
ing in Software Defined Networks: Data collection and traffic classification, in: 2016
IEEE 24th International Conference on Network Protocols (ICNP), 2016, pp. 1-5.
doi:10.1109/ICNP.2016.7785327.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, J. Turner, OpenFlow: Enabling Innovation in Campus Net-
works, SIGCOMM Comput. Commun. Rev. 38 (2) (2008) 69-74. doi:10.1145/
1355734.1355746.

OpenFlow Switch Specification, Version 1.3.0, The Open Networking Foundation,
2012.

URL https://www.opennetworking.org/wp—content/uploads/
2014/10/openflow—spec—-v1.3.0.pdf

J. Carner, A. Mestres, E. Alarcon, A. Cabellos, Machine learning-based network
modeling: An artificial neural network model vs a theoretical inspired model, in:
2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN),
2017, pp. 522-524. doi:10.1109/ICUFN.2017.79938309.

53

https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/ICNP.2016.7785327
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://doi.org/10.1109/ICUFN.2017.7993839

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Jain, M. Khandelwal, A. Katkar, J. Nygate, Applying big data technologies
to manage QoS in an SDN, in: 2016 12th International Conference on Network
and Service Management (CNSM), 2016, pp. 302-306. doi:10.1109/CNSM.
2016.7818437.

R. Pasquini, R. Stadler, Learning end-to-end application QoS from openflow switch
statistics, in: 2017 IEEE Conference on Network Softwarization (NetSoft), 2017,
pp- 1-9. do1:10.1109/NETSOFT.2017.8004198.

E. Reticcioli, G. D. Girolamo, F. Smarra, A. Carmenini, A. D’Innocenzo,
F. Graziosi, Learning SDN traffic flow accurate models to enable queue bandwidth
dynamic optimization, European Conference on Networks and Communications
(EuCNC), 2020 (2020).

L. Tan, Resource Allocation and Performance Optimization in Communication Net-
works and the Internet, CRC press, 2017.

A. M. Abdelmoniem, B. Bensaou, Hysteresis-based active queue management for
tep traffic in data centers, in: IEEE INFOCOM 2019-1EEE Conference on Computer
Communications, IEEE, 2019, pp. 1621-1629.

L. Boero, M. Cello, C. Garibotto, M. Marchese, M. Mongelli, BeaQoS: Load bal-
ancing and deadline management of queues in an OpenFlow SDN switch, Computer
Networks 106 (2016) 161-170.

K. S. Umadevi, M. S. S. Pranay, K. Rachana, Multilevel queue scheduling in
software defined networks, in: 2017 Innovations in Power and Advanced Com-
puting Technologies (i-PACT), 2017, pp. 1-4. [do1:10.1109/IPACT.2017.
8245144\

C. Olariu, M. Zuber, C. Thorpe, Delay-based priority queueing for voip over soft-
ware defined networks, in: 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), 2017, pp. 652—655. doi:10.23919/INM.2017.
7987352

M. Haiyan, Y. Jinyao, P. Georgopoulos, B. Plattner, Towards sdn based queuing
delay estimation, China Communications 13 (3) (2016) 27-36. [doi:10.1109/
CC.2016.7445500.

54

https://doi.org/10.1109/CNSM.2016.7818437
https://doi.org/10.1109/CNSM.2016.7818437
https://doi.org/10.1109/NETSOFT.2017.8004198
https://doi.org/10.1109/IPACT.2017.8245144
https://doi.org/10.1109/IPACT.2017.8245144
https://doi.org/10.23919/INM.2017.7987352
https://doi.org/10.23919/INM.2017.7987352
https://doi.org/10.1109/CC.2016.7445500
https://doi.org/10.1109/CC.2016.7445500

[17] Y. Chen, L. Wang, F. Lin, B. P. Lin, Deterministic quality of service guarantee for dy-
namic service chaining in software defined networking, IEEE Transactions on Net-
work and Service Management 14 (4) (2017) 991-1002. doi:10.1109/TNSM.
2017.2758328.

[18] A. Al-Najjar, S. Layeghy, M. Portmann, J. Indulska, Enhancing quality of experi-
ence of voip traffic in sdn based end-hosts, in: 2018 28th International Telecom-
munication Networks and Applications Conference (ITNAC), 2018, pp. 1-8. |[do1i:
10.1109/ATNAC.2018.8615286.

[19] Q.-L. Li, J.-Y. Ma, R.-N. Fan, L. Xia, An Overview for Markov Deci-
sion Processes in Queues and Networks, 2019, pp. 44-71. doi:10.1007/
978-981-15-08064—-6_ 3.

[20] A. Asanjarani, Y. Nazarathy, P. K. Pollett, Parameter and state estimation in queues
and related stochastic models: A bibliography (2017). larXiv:1701.08338.

[21] K. Sood, S. Yu, Y. Xiang, Performance analysis of software-defined network switch
using $m/geo/1$ model, IEEE Communications Letters 20 (2016) 2522-2525.

[22] D. Singh, B. Ng, Y.-C. Lai, Y.-D. Lin, W. K. Seah, Modelling software-defined
networking: Software and hardware switches, Journal of Network and Computer
Applications 122 (2018) 24 — 36.

[23] R. Schoffauer, G. Wunder, Model-predictive control for discrete-time queueing net-
works with varying topology, ArXiv abs/2004.01985 (2020).

[24] P. Wang, H. Chen, X. Yang, Y. Ma, Design and analysis of a model predictive con-
troller for active queue management, ISA Transactions 51 (1) (2012) 120 — 131.

[25] Ki Baek Kim, Design of feedback controls supporting tcp based on the state-space
approach, IEEE Transactions on Automatic Control 51 (7) (2006) 1086—-1099. doi :
10.1109/TAC.2006.8787409.

[26] J. Kim, G. Hwang, Prediction based efficient online bandwidth allocation method,
IEEE Communications Letters 23 (12) (2019) 2330-2334. |doi:10.1109/
LCOMM.2019.29477895.

[27] W. Aljoby, X. Wang, T. Z. J. Fu, R. T. B. Ma, On sdn-enabled online and dynamic
bandwidth allocation for stream analytics, IEEE Journal on Selected Areas in Com-
munications 37 (8) (2019) 1688-1702. |doi:10.1109/JSAC.2019.2927062.

55

https://doi.org/10.1109/TNSM.2017.2758328
https://doi.org/10.1109/TNSM.2017.2758328
https://doi.org/10.1109/ATNAC.2018.8615286
https://doi.org/10.1109/ATNAC.2018.8615286
https://doi.org/10.1007/978-981-15-0864-6_3
https://doi.org/10.1007/978-981-15-0864-6_3
http://arxiv.org/abs/1701.08338
https://doi.org/10.1109/TAC.2006.878749
https://doi.org/10.1109/TAC.2006.878749
https://doi.org/10.1109/LCOMM.2019.2947895
https://doi.org/10.1109/LCOMM.2019.2947895
https://doi.org/10.1109/JSAC.2019.2927062

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Lebedenko, O. Yeremenko, S. Harkusha, A. S. Ali, Dynamic model of queue
management based on resource allocation in telecommunication networks, in: 2018
14th International Conference on Advanced Trends in Radioelecrtronics, Telecom-
munications and Computer Engineering (TCSET), IEEE, 2018, pp. 1035-1038.

L. Le, J. Aikat, K. Jeffay, F. D. Smith, The effects of active queue management and
explicit congestion notification on web performance, IEEE/ACM Transactions on
Networking 15 (6) (2007) 1217-1230. doi:10.1109/TNET.2007.910583.

and Sourav Ghosh, R. Rajkumar, J. Hansen, J. Lehoczky, Scalable QoS-based
resource allocation in hierarchical networked environment, in: Proc. 11th IEEE
Real Time and Embedded Technology and Applications Symp, 2005, pp. 256-267.
doi:10.1109/RTAS.2005.47.

M. Wang, Y. Cui, X. Wang, S. Xiao, J. Jiang, Machine learning for networking:
Workflow, advances and opportunities, [IEEE Network 32 (2) (2018) 92-99. do1i:
10.1109/MNET.2017.1700200.

M. Usama, J. Qadir, A. Raza, H. Arif, K.-L. A. Yau, Y. Elkhatib, A. Hussain, A. Al-
Fuqaha, Unsupervised Machine Learning for Networking: Techniques, Applications
and Research Challenges, arXiv:1709.06599 [cs]ArXiv: 1709.06599 (Sep. 2017).

J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, Y. Liu, A Survey of Machine
Learning Techniques Applied to Software Defined Networking (SDN): Research
Issues and Challenges, IEEE Communications Surveys Tutorials 21 (1) (2019) 393—
430.do1:10.1109/COMST.2018.2866942.

G. Xu, Y. Mu, J. Liu, Inclusion of artificial intelligence in communication networks

and services (Jan. 2018).

D. D. Clark, C. Partridge, J. C. Ramming, J. T. Wroclawski, A knowledge plane for
the internet, in: Proceedings of the 2003 conference on Applications, technologies,

architectures, and protocols for computer communications, ACM, 2003, pp. 3—10.

A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcén, M. Solé,
V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett, et al., Knowledge-defined
networking, ACM SIGCOMM Computer Communication Review 47 (3) (2017) 2—
10.

56

https://doi.org/10.1109/TNET.2007.910583
https://doi.org/10.1109/RTAS.2005.47
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1109/COMST.2018.2866942

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, N. Rao, Are we ready for SDN? Implementation challenges
for software-defined networks, [IEEE Communications Magazine 51 (7) (2013) 36—
43.do1:10.1109/MCOM.2013.6553676.

T. Chen, M. Matinmikko, X. Chen, X. Zhou, P. Ahokangas, Software defined mobile
networks: concept, survey, and research directions, [IEEE Communications Maga-
zine 53 (11) (2015) 126-133. doi:10.1109/MCOM.2015.7321981.

M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia, W. Kellerer, Interfaces, attributes,
and use cases: A compass for sdn, [EEE Communications Magazine 52 (6) (2014)
210-217. doi1:10.1109/MCOM.2014.6829966.

P. Ameigeiras, J. J. Ramos-munoz, L. Schumacher, J. Prados-Garzon, J. Navarro-
Ortiz, J. M. Lopez-soler, Link-level access cloud architecture design based on sdn
for 5g networks, IEEE Network 29 (2) (2015) 24-31. doi1:10.1109/MNET.
2015.7064899.

O. Yeremenko, O. Simonenko, Mathematical model of queue management with
flows aggregation and bandwidth allocation, Advances in Computer Science for En-
gineering and Education 754 (2018) 165.

J. John, R. Balan, Priority queuing technique promoting deadline sensitive data
transfers in router based heterogeneous networks, International Journal of Applied
Engineering Research 12 (15) (2017) 4899-4903.

J. Yang, S. Ulukus, Trading Rate for Balanced Queue Lengths for Network Delay
Minimization, IEEE Journal on Selected Areas in Communications 29 (5) (2011)
988-996./d01:10.1109/JSAC.2011.1105009.

M. Bahnasy, H. Elbiaze, B. Boughzala, Zero-queue ethernet congestion control pro-
tocol based on available bandwidth estimation, Journal of Network and Computer
Applications 105 (2018) 1-20. doi:10.1016/3.Jnca.2017.12.016.

URL http://www.scilencedirect.com/science/article/pii/
S5108480451730423X

J. Zhang, F. Ren, X. Yue, R. Shu, C. Lin, Sharing Bandwidth by Allocating Switch
Buffer in Data Center Networks, IEEE Journal on Selected Areas in Communica-
tions 32 (1) (2014) 39-51./doi:10.1109/JSAC.2014.140105.

57

https://doi.org/10.1109/MCOM.2013.6553676
https://doi.org/10.1109/MCOM.2015.7321981
https://doi.org/10.1109/MCOM.2014.6829966
https://doi.org/10.1109/MNET.2015.7064899
https://doi.org/10.1109/MNET.2015.7064899
https://doi.org/10.1109/JSAC.2011.110509
http://www.sciencedirect.com/science/article/pii/S108480451730423X
http://www.sciencedirect.com/science/article/pii/S108480451730423X
https://doi.org/10.1016/j.jnca.2017.12.016
http://www.sciencedirect.com/science/article/pii/S108480451730423X
http://www.sciencedirect.com/science/article/pii/S108480451730423X
https://doi.org/10.1109/JSAC.2014.140105

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

M. Cello, M. Marchese, M. Mongelli, On the QoS Estimation in an OpenFlow Net-
work: The Packet Loss Case, IEEE Communications Letters 20 (3) (2016) 554-557.

J. Lee, S. Bohacek, J. Hespanha, K. Obraczka, Modeling communication networks
with hybrid systems, IEEE/ACM Transactions on Networking 15 (3) (2007) 630—
643.

M. D. Di Benedetto, A. Di Loreto, A. D’Innocenzo, T. Ionta, Modeling of traffic
congestion and re-routing in a service provider network, in: Proc. IEEE Int. Conf.
Communications Workshops (ICC), 2014, pp. 557-562. doi:10.1109/ICCW.
2014.6881257.

P. Mulinka, P. Casas, Stream-based machine learning for network security and
anomaly detection, in: Proceedings of the 2018 Workshop on Big Data Analytics
and Machine Learning for Data Communication Networks, ACM, 2018, pp. 1-7.

A. Patcha, J.-M. Park, An overview of anomaly detection techniques: Existing solu-
tions and latest technological trends, Computer networks 51 (12) (2007) 3448-3470.

T. T. Nguyen, G. Armitage, A survey of techniques for internet traffic classification
using machine learning, IEEE communications surveys & tutorials 10 (4) (2008)
56-76.

M. Bkassiny, Y. Li, S. K. Jayaweera, A survey on machine-learning techniques in
cognitive radios, [IEEE Communications Surveys Tutorials 15 (3) (2013) 1136-1159.

M. A. Alsheikh, S. Lin, D. Niyato, H. Tan, Machine learning in wireless sensor
networks: Algorithms, strategies, and applications, IEEE Communications Surveys
Tutorials 16 (4) (2014) 1996-2018.

X. Wang, X. Li, V. C. M. Leung, Artificial intelligence-based techniques for emerg-
ing heterogeneous network: State of the arts, opportunities, and challenges, IEEE
Access 3 (2015) 1379-1391.

A. L. Buczak, E. Guven, A survey of data mining and machine learning methods for
cyber security intrusion detection, IEEE Communications Surveys Tutorials 18 (2)
(2016) 1153-1176.

P. V. Klaine, M. A. Imran, O. Onireti, R. D. Souza, A survey of machine learn-
ing techniques applied to self-organizing cellular networks, IEEE Communications
Surveys Tutorials 19 (4) (2017) 2392-2431.

58

https://doi.org/10.1109/ICCW.2014.6881257
https://doi.org/10.1109/ICCW.2014.6881257

[57] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, K. Mizutani, State-
of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelli-
gent network traffic control systems, IEEE Communications Surveys Tutorials 19 (4)
(2017) 2432-2455.

[58] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis, R. Atkinson, Shallow and
deep networks intrusion detection system: A taxonomy and surveyarXiv:1701.
02145v1.

[59] X.Zhou, M. Sun, G.Y. Li, B.-H. Juang, Intelligent wireless communications enabled
by cognitive radio and machine learningarXiv:1710.11240v4.

[60] M. Chen, U. Challita, W. Saad, C. Yin, M. Debbah, Artificial neural networks-based
machine learning for wireless networks: A tutorialarXiv:1710.02913v2.

[61] Open networking foundation.

URL https://www.opennetworking.orqg/

[62] Open vSwitch, 2019.
URL https://www.openvswitch.orqg/

[63] Indigo: Open source openflow switches.
URL https://github.com/floodlight/indigo

[64] Pantou: Openflow 1.3 for open wrt.
URL https://github.com/CPgD/ofsoftswitchl3/wiki/
OpenFlowl.3-for-OpenWRT

[65] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous, R. Raghu-
raman, J. Luo, NetFPGA—An Open Platform for Gigabit-Rate Network Switching

and Routing, in: 2007 IEEE International Conference on Microelectronic Systems
Education (MSE’07), 2007, pp. 160-161.

[66] M. B. Anwer, M. Motiwala, M. b. Tariq, N. Feamster, SwitchBlade: a platform
for rapid deployment of network protocols on programmable hardware, in: Pro-
ceedings of the ACM SIGCOMM 2010 conference, SIGCOMM 10, Associa-
tion for Computing Machinery, New York, NY, USA, 2010, pp. 183-194. doi:
10.1145/1851182.1851206.

URL https://doi.org/10.1145/1851182.1851206

59

http://arxiv.org/abs/1701.02145v1
http://arxiv.org/abs/1701.02145v1
http://arxiv.org/abs/1710.11240v4
http://arxiv.org/abs/1710.02913v2
https://www.opennetworking.org/
https://www.opennetworking.org/
https://www.openvswitch.org/
https://www.openvswitch.org/
https://github.com/floodlight/indigo
https://github.com/floodlight/indigo
https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow1.3-for-OpenWRT
https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow1.3-for-OpenWRT
https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow1.3-for-OpenWRT
https://doi.org/10.1145/1851182.1851206
https://doi.org/10.1145/1851182.1851206
https://doi.org/10.1145/1851182.1851206
https://doi.org/10.1145/1851182.1851206
https://doi.org/10.1145/1851182.1851206

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao, Y. Zhang, Server-
Switch: A Programmable and High Performance Platform for Data Center Networks
(Mar. 2011).

RYU Controller, 2019.
URL https://osrg.github.io/ryu/

J. Medved, R. Varga, A. Tkacik, K. Gray, OpenDaylight: Towards a Model-Driven
SDN Controller architecture, in: Proceeding of IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks 2014, 2014, pp. 1-6. doi:
10.1109/WoWMoM.2014.6918985.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, S. Shenker, Nox:
Towards an operating system for networks, SIGCOMM Comput. Commun. Reyv.,
vol. 38, no. 3, pp. 105-110, (2008).

Pox.

URL https://github.com/noxrepo/pox

Floodlight.
URL https://github.com/floodlight/floodlight

D. Erickson, The beacon openflow controller, in: Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, HotSDN 13,
Association for Computing Machinery, New York, NY, USA, 2013, pp. 13-18.
doi:10.1145/2491185.2491189.

URL https://doi.org/10.1145/2491185.2491189

B. Pfaff, B. Davie, The open vswitch database management protocol (2013).
URL https://rfc-editor.org/rfc/rfc7047.txt

H. Song, Protocol-oblivious forwarding: unleash the power of SDN through a
future-proof forwarding plane, in: Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking, HotSDN ’13, Associa-
tion for Computing Machinery, New York, NY, USA, 2013, pp. 127-132. doi:
10.1145/2491185.2491190.

URL https://doi.org/10.1145/2491185.2491190

60

https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
https://doi.org/10.1109/WoWMoM.2014.6918985
https://doi.org/10.1109/WoWMoM.2014.6918985
https://github.com/noxrepo/pox
https://github.com/noxrepo/pox
https://github.com/floodlight/floodlight
https://github.com/floodlight/floodlight
https://doi.org/10.1145/2491185.2491189
https://doi.org/10.1145/2491185.2491189
https://doi.org/10.1145/2491185.2491189
https://rfc-editor.org/rfc/rfc7047.txt
https://rfc-editor.org/rfc/rfc7047.txt
https://doi.org/10.1145/2491185.2491190
https://doi.org/10.1145/2491185.2491190
https://doi.org/10.1145/2491185.2491190
https://doi.org/10.1145/2491185.2491190
https://doi.org/10.1145/2491185.2491190

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

G. Bianchi, M. Bonola, A. Capone, C. Cascone, OpenState: programming
platform-independent stateful openflow applications inside the switch, ACM SIG-
COMM Computer Communication Review 44 (2) (2014) 44-51.|doi:10.1145/
2602204.2602211.

URL https://doi.org/10.1145/2602204.2602211

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama, S. Shenker, Onix: A distributed control

platform for large-scale production networks, Proc. OSDI, vol. 10. (2010).

A. Tootoonchian, Y. Ganjali, Hyperflow: A distributed control plane for openflow,
Proc. Enterprise Netw (2010).

H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, R. Sidi, SDNi: A Message Exchange
Protocol for Software Defined Networks (SDNS) across Multiple Domains (draft-
yin-sdn-sdni-00) (June 2012).

URL http://tools.ietf.org/id/draft-yin-sdn-sdni—-00.txt

P. Lin, J. Bi, Y. Wang, East-West Bridge for SDN Network Peering, in: J. Su,
B. Zhao, Z. Sun, X. Wang, F. Wang, K. Xu (Eds.), Frontiers in Internet Technolo-
gies, Communications in Computer and Information Science, Springer, Berlin, Hei-
delberg, 2013, pp. 170-181. do1:10.1007/978-3-642-53959-6_16.

F. Benamrane, M. Ben mamoun, R. Benaini, An East-West interface for distributed
SDN control plane: Implementation and evaluation, Computers & Electrical
Engineering 57 (2017) 162-175. doi:10.1016/7j.compeleceng.2016.
09.012.

URL http://www.sciencedirect.com/science/article/pii/
S0045790616302798

A. Mendiola, J. Astorga, E. Jacob, M. Higuero, A Survey on the Contributions of
Software-Defined Networking to Traffic Engineering, IEEE Communications Sur-
veys Tutorials 19 (2) (2017) 918-953. do1:10.1109/COMST.2016.2633579.

I. Ahmad, S. Namal, M. Ylianttila, A. Gurtov, Security in Software Defined Net-
works: A Survey, IEEE Communications Surveys Tutorials 17 (4) (2015) 2317—-
2346. doi1:10.1109/COMST.2015.2474118.

61

https://doi.org/10.1145/2602204.2602211
https://doi.org/10.1145/2602204.2602211
https://doi.org/10.1145/2602204.2602211
https://doi.org/10.1145/2602204.2602211
https://doi.org/10.1145/2602204.2602211
http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
https://doi.org/10.1007/978-3-642-53959-6_16
http://www.sciencedirect.com/science/article/pii/S0045790616302798
http://www.sciencedirect.com/science/article/pii/S0045790616302798
https://doi.org/10.1016/j.compeleceng.2016.09.012
https://doi.org/10.1016/j.compeleceng.2016.09.012
http://www.sciencedirect.com/science/article/pii/S0045790616302798
http://www.sciencedirect.com/science/article/pii/S0045790616302798
https://doi.org/10.1109/COMST.2016.2633579
https://doi.org/10.1109/COMST.2015.2474118

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

S. Scott-Hayward, S. Natarajan, S. Sezer, A Survey of Security in Software Defined
Networks, IEEE Communications Surveys Tutorials 18 (1) (2016) 623-654. doi :
10.1109/COMST.2015.2453114\

D. B. Rawat, S. R. Reddy, Software Defined Networking Architecture, Security
and Energy Efficiency: A Survey, IEEE Communications Surveys Tutorials 19 (1)
(2017) 325-346. do1:10.1109/COMST.2016.2618874.

S. T. Ali, V. Sivaraman, A. Radford, S. Jha, A Survey of Securing Networks Us-
ing Software Defined Networking, IEEE Transactions on Reliability 64 (3) (2015)
1086-1097. doi:10.1109/TR.2015.2421391.

Q. Yan, F. R. Yu, Q. Gong, J. Li, Software-Defined Networking (SDN) and Dis-
tributed Denial of Service (DDoS) Attacks in Cloud Computing Environments: A
Survey, Some Research Issues, and Challenges, IEEE Communications Surveys Tu-
torials 18 (1) (2016) 602—-622.|do1:10.1109/COMST.2015.2487361.

T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, M. Conti, A Survey on the Secu-
rity of Stateful SDN Data Planes, IEEE Communications Surveys Tutorials 19 (3)
(2017) 1701-1725.|do1:10.1109/COMST.2017.26898109.

P. C. Fonseca, E. S. Mota, A Survey on Fault Management in Software-Defined
Networks, IEEE Communications Surveys Tutorials 19 (4) (2017) 2284-2321.
doi:10.1109/COMST.2017.2719862.

J. W. Guck, A. Van Bemten, M. Reisslein, W. Kellerer, Unicast QoS Routing Algo-
rithms for SDN: A Comprehensive Survey and Performance Evaluation, IEEE Com-
munications Surveys Tutorials 20 (1) (2018) 388-415. doi1:10.1109/COMST.
2017.2749760.

R. Alvizu, G. Maier, N. Kukreja, A. Pattavina, R. Morro, A. Capello, C. Cavaz-
zoni, Comprehensive Survey on T-SDN: Software-Defined Networking for Trans-
port Networks, IEEE Communications Surveys Tutorials 19 (4) (2017) 2232-2283.
doi1:10.1109/COMST.2017.2715220.

A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, W. Kellerer, Software
Defined Optical Networks (SDONs): A Comprehensive Survey, IEEE Communica-
tions Surveys Tutorials 18 (4) (2016) 2738-2786. do1:10.1109/COMST.2016.
2586999.

62

https://doi.org/10.1109/COMST.2015.2453114
https://doi.org/10.1109/COMST.2015.2453114
https://doi.org/10.1109/COMST.2016.2618874
https://doi.org/10.1109/TR.2015.2421391
https://doi.org/10.1109/COMST.2015.2487361
https://doi.org/10.1109/COMST.2017.2689819
https://doi.org/10.1109/COMST.2017.2719862
https://doi.org/10.1109/COMST.2017.2749760
https://doi.org/10.1109/COMST.2017.2749760
https://doi.org/10.1109/COMST.2017.2715220
https://doi.org/10.1109/COMST.2016.2586999
https://doi.org/10.1109/COMST.2016.2586999

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

I. T. Haque, N. Abu-Ghazaleh, Wireless Software Defined Networking: A Survey
and Taxonomy, IEEE Communications Surveys Tutorials 18 (4) (2016) 2713-2737.
doi:10.1109/COMST.2016.2571118.

S. Bera, S. Misra, A. V. Vasilakos, Software-Defined Networking for Internet of
Things: A Survey, IEEE Internet of Things Journal 4 (6) (2017) 1994-2008. do1i:
10.1109/JI0T.2017.2746186.

A. C. Baktir, A. Ozgovde, C. Ersoy, How Can Edge Computing Benefit From
Software-Defined Networking: A Survey, Use Cases, and Future Directions, IEEE
Communications Surveys Tutorials 19 (4) (2017) 2359-2391. |doi:10.1109/
COMST.2017.2717482.

O. Michel, E. Keller, SDN in wide-area networks: A survey, in: 2017 Fourth
International Conference on Software Defined Systems (SDS), 2017, pp. 37-42.
doi:10.1109/5SDS.2017.7939138.

R. Jain, S. Paul, Network virtualization and software defined networking for cloud
computing: a survey, [IEEE Communications Magazine 51 (11) (2013) 24-31. do1i:
10.1109/MCOM.2013.6658648.

Y. Li, M. Chen, Software-Defined Network Function Virtualization: A Survey, IEEE
Access 3 (2015) 2542-2553. do1:10.1109/ACCESS.2015.2499271.

C. Liang, F. R. Yu, Wireless Network Virtualization: A Survey, Some Research
Issues and Challenges, IEEE Communications Surveys Tutorials 17 (1) (2015) 358—
380.1do1:10.1109/COMST.2014.2352118.

B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, T. Turletti, A survey of
software-defined networking: Past, present, and future of programmable networks,
IEEE Communications Surveys Tutorials 16 (3) (2014) 1617-1634.

Y. Jarraya, T. Madi, M. Debbabi, A Survey and a Layered Taxonomy of Software-
Defined Networking, IEEE Communications Surveys Tutorials 16 (4) (2014) 1955—
1980./do1:10.1109/COMST.2014.2320094.

W. Xia, Y. Wen, C. H. Foh, D. Niyato, H. Xie, A Survey on Software-Defined
Networking, IEEE Communications Surveys Tutorials 17 (1) (2015) 27-51. doi:
10.1109/COMST.2014.2330903.

63

https://doi.org/10.1109/COMST.2016.2571118
https://doi.org/10.1109/JIOT.2017.2746186
https://doi.org/10.1109/JIOT.2017.2746186
https://doi.org/10.1109/COMST.2017.2717482
https://doi.org/10.1109/COMST.2017.2717482
https://doi.org/10.1109/SDS.2017.7939138
https://doi.org/10.1109/MCOM.2013.6658648
https://doi.org/10.1109/MCOM.2013.6658648
https://doi.org/10.1109/ACCESS.2015.2499271
https://doi.org/10.1109/COMST.2014.2352118
https://doi.org/10.1109/COMST.2014.2320094
https://doi.org/10.1109/COMST.2014.2330903
https://doi.org/10.1109/COMST.2014.2330903

[103] F. Hu, Q. Hao, K. Bao, A Survey on Software-Defined Network and OpenFlow:
From Concept to Implementation, IEEE Communications Surveys Tutorials 16 (4)
(2014) 2181-2206. do1:10.1109/COMST.2014.2326417.

[104] J. Xie, D. Guo, Z. Hu, T. Qu, P. Lv, Control plane of software de-
fined networks: A survey, Computer Communications 67 (2015) 1-10.
do1:10.1016/7.comcom.2015.06.004.

URL http://www.sciencedirect.com/science/article/pii/
S0140366415002200

[105] C. Trois, M. D. Del Fabro, L. C. E. de Bona, M. Martinello, A Survey on SDN
Programming Languages: Toward a Taxonomy, IEEE Communications Surveys Tu-
torials 18 (4) (2016) 2687-2712. doi1:10.1109/COMST.2016.2553778.

[106] T.Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, Y. Liu, A Survey on Large-Scale Soft-
ware Defined Networking (SDN) Testbeds: Approaches and Challenges, IEEE Com-
munications Surveys Tutorials 19 (2) (2017) 891-917. doi1:10.1109/COMST.
2016.2630047.

[107] A. Blenk, A. Basta, M. Reisslein, W. Kellerer, Survey on Network Virtualization
Hypervisors for Software Defined Networking, IEEE Communications Surveys Tu-
torials 18 (1) (2016) 655-685. doi:10.1109/COMST.2015.2489183.

[108] M. Mohammed, M. B. Khan, E. B. M. Bashier, Machine Learning: Algorithms and
Applications, CRC Press, 2016, google-Books-ID: XSLBDAAAQBALI.

[109] S. Marsland, Machine Learning: An Algorithmic Perspective, Second Edition, CRC
Press, 2015, google-Books-ID: y_ oYCwAAQBAJ.

[110] E. Alpaydin, Introduction to Machine Learning, MIT Press, 2020, google-Books-ID:
tZnSDwAAQBAJ.

[111] I. Z. SB Kotsiantis, Supervised machine learning: A review of classification tech-
niques, Emerging Artificial Intelligence Applications in Computer Engineering
(2007).

[112] J. E. Trevor Hastie, Robert Tibshirani, The Elements of Statistical Learning : Data
Mining, Inference, and Prediction, 2009.

[113] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Transactions on In-
formation Theory 13 (1) (1967) 21-27.|do1:10.1109/TIT.1967.1053964.

64

https://doi.org/10.1109/COMST.2014.2326417
http://www.sciencedirect.com/science/article/pii/S0140366415002200
http://www.sciencedirect.com/science/article/pii/S0140366415002200
https://doi.org/10.1016/j.comcom.2015.06.004
http://www.sciencedirect.com/science/article/pii/S0140366415002200
http://www.sciencedirect.com/science/article/pii/S0140366415002200
https://doi.org/10.1109/COMST.2016.2553778
https://doi.org/10.1109/COMST.2016.2630047
https://doi.org/10.1109/COMST.2016.2630047
https://doi.org/10.1109/COMST.2015.2489183
https://doi.org/10.1109/TIT.1967.1053964

[114]

[115]

[116]

[117]

[118]
[119]

[120]

[121]

[122]

[123]

J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques, Elsevier, 2011,
google-Books-ID: pQws07tdpjoC.

J. R. Quinlan, Induction of decision trees, Machine Learning 1 (1) (1986) 81-106.
doi1:10.1007/BF00116251.
URL https://doi.org/10.1007/BF00116251

S. Karatsiolis, C. N. Schizas, Region based Support Vector Machine algorithm for
medical diagnosis on Pima Indian Diabetes dataset, in: 2012 IEEE 12th International
Conference on Bioinformatics Bioengineering (BIBE), 2012, pp. 139-144. do1i:
10.1109/BIBE.2012.6399663.

W. R. Burrows, M. Benjamin, S. Beauchamp, E. R. Lord, D. McCollor, B. Thom-
son, CART Decision-Tree Statistical Analysis and Prediction of Summer Season
Maximum Surface Ozone for the Vancouver, Montreal, and Atlantic Regions of
Canada, Journal of Applied Meteorology 34 (8) (1995) 1848-1862. doi:10.
1175/1520-0450(1995)034<1848:CDTSAA>2.0.CO; 2.

URL https://journals.ametsoc.org/jamc/article/34/8/1848/
15131 /CART-Decision—-Tree—-Statistical—-Analysis—and

L. Breiman, Random forests (1999).
S. Haykin, Neural Networks: A Comprehensive Foundation.

K. Lee, D. Booth, P. Alam, /A comparison of supervised and unsupervised neural
networks in predicting bankruptcy of Korean firms, Expert Systems with Applica-
tions 29 (1) (2005) 1-16. doi:10.1016/j.eswa.2005.01.004.

URL http://www.scilencedirect.com/science/article/pii/
S0957417405000023

S. Timotheou, The random neural network: a survey, The computer journal 53 (3)
(2010) 251-267.

G. H. Yann LeCun, Yoshua Bengio, Deep learning, Nature (2015).

J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks
61 (2015) 85-117.do1:10.1016/j.neunet.2014.09.003.

URL http://www.sciencedirect.com/science/article/pii/
S0893608014002135

65

https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://doi.org/10.1109/BIBE.2012.6399663
https://doi.org/10.1109/BIBE.2012.6399663
https://journals.ametsoc.org/jamc/article/34/8/1848/15131/CART-Decision-Tree-Statistical-Analysis-and
https://journals.ametsoc.org/jamc/article/34/8/1848/15131/CART-Decision-Tree-Statistical-Analysis-and
https://journals.ametsoc.org/jamc/article/34/8/1848/15131/CART-Decision-Tree-Statistical-Analysis-and
https://doi.org/10.1175/1520-0450(1995)034<1848:CDTSAA>2.0.CO;2
https://doi.org/10.1175/1520-0450(1995)034<1848:CDTSAA>2.0.CO;2
https://journals.ametsoc.org/jamc/article/34/8/1848/15131/CART-Decision-Tree-Statistical-Analysis-and
https://journals.ametsoc.org/jamc/article/34/8/1848/15131/CART-Decision-Tree-Statistical-Analysis-and
http://www.sciencedirect.com/science/article/pii/S0957417405000023
http://www.sciencedirect.com/science/article/pii/S0957417405000023
https://doi.org/10.1016/j.eswa.2005.01.004
http://www.sciencedirect.com/science/article/pii/S0957417405000023
http://www.sciencedirect.com/science/article/pii/S0957417405000023
http://www.sciencedirect.com/science/article/pii/S0893608014002135
https://doi.org/10.1016/j.neunet.2014.09.003
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.sciencedirect.com/science/article/pii/S0893608014002135

[124] A.D. Gaurav Pandey, Learning by stretching deep networks, Proceedings of the 31st

International Conference on MachineLearning, Beijing, China (2014).

[125] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classification with Deep Con-
volutional Neural Networks, in: F. Pereira, C. J. C. Burges, L. Bottou, K. Q. Wein-
berger (Eds.), Advances in Neural Information Processing Systems 25, Curran As-
sociates, Inc., 2012, pp. 1097-1105.

[126] C. Li, Y. Wu, X. Yuan, Z. Sun, W. Wang, X. Li, L. Gong, Detection and defense of
DDoS attack—based on deep learning in OpenFlow-based SDN, International Journal
of Communication Systems 31 (5) (2018) e3497. doi1:10.1002/dac.3497.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.
3497

[127] X.Li, X. Wu, Constructing long short-term memory based deep recurrent neural net-
works for large vocabulary speech recognition, in: 2015 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 4520-4524,
1SSN: 2379-190X. doi1:10.1109/ICASSP.2015.7178826.

[128] V. Vapnik, An overview of statistical learning theory, IEEE Transactions on Neural
Networks 10 (5) (1999) 988-999. doi1:10.1109/72.788640.

[129] G. E. P. Box, G. C. Tiao, Bayesian Inference in Statistical Analysis, John Wiley &
Sons, 2011, google-Books-ID: T8 Askeyk1k4C.

[130] J. Bakker, Intelligent Traffic Classification for Detecting DDoS Attacks using SD-
N/OpenFlow (2017).
URL http://researcharchive.vuw.ac.nz/handle/10063/6645

[131] L. Rabiner, A tutorial on hidden Markov models and selected applications in speech
recognition, Proceedings of the IEEE 77 (2) (1989) 257-286. |do1:10.1109/5.
18626l

[132] P. Holgado, V. A. Villagra, L. Vazquez, Real-Time Multistep Attack Prediction
Based on Hidden Markov Models, IEEE Transactions on Dependable and Secure
Computing 17 (1) (2020) 134-147. do1:10.1109/TDSC.2017.2751478.

[133] T. Kohonen, Self-Organizing Maps, Springer Science & Business Media, 2012.

66

https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3497
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3497
https://doi.org/10.1002/dac.3497
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3497
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3497
https://doi.org/10.1109/ICASSP.2015.7178826
https://doi.org/10.1109/72.788640
http://researcharchive.vuw.ac.nz/handle/10063/6645
http://researcharchive.vuw.ac.nz/handle/10063/6645
http://researcharchive.vuw.ac.nz/handle/10063/6645
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/TDSC.2017.2751478

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

H. Wu, S. Prasad, Semi-Supervised Deep Learning Using Pseudo Labels for Hyper-
spectral Image Classification, IEEE Transactions on Image Processing 27 (3) (2018)
1259-1270. doi1:10.1109/TIP.2017.2772836.

R. S. Sutton, A. G. Barto, Reinforcement Learning, second edition: An Introduction,
MIT Press, 2018, google-Books-ID: uWVODwAAQBAJ.

L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement Learning:
A Survey, Journal of Artificial Intelligence Research 4 (1996) 237-285.
doi:10.1613/jair.301.

URL https://www. jair.org/index.php/jair/article/view/
10166

Mininet, 2019.
URL http://mininet.orqg/

S. Avallone, S. Guadagno, D. Emma, A. Pescape, G. Ventre, D-itg distributed inter-
net traffic generator, in: First International Conference on the Quantitative Evalua-
tion of Systems, 2004. QEST 2004. Proceedings., IEEE, 2004, pp. 316-317.

A. Botta, A. Dainotti, A. Pescapé, A tool for the generation of realistic network
workload for emerging networking scenarios, Computer Networks 56 (15) (2012)
3531-3547.

A. Botta, W. de Donato, A. Dainotti, S. Avallone, A. Pescape, D-itg 2.8. 1 manual,
Computer for Interaction and Communications (COMICS) Group, Department of
Electrical Engineering and Information Technologies, University of Naples Federico

II, Naples, Italy (www. grid. unina. it/software/ITG/manual) (2013).

F. Baker, D. Black, S. Blake, K. Nichols, Definition of the differentiated services
field (ds field) in the ipv4 and ipv6 headers, Tech. rep., RFC 2474, Dec (1998).

J. Babiarz, K. Chan, F. Baker, Configuration guidelines for diffserv service classes,
RFC 4594 (August 2006).

A. M. Langellotti, S. Mastropietro, F. T. Moretti, A. Soldati, Notiziario Tecnico
Telecom Italia, Tech. rep., Telecom Italia (2004).

ryu.app.ofctl rest, 2019.
URL https://ryu.readthedocs.io/en/latest/app/ofctl_rest.
html

67

https://doi.org/10.1109/TIP.2017.2772836
https://www.jair.org/index.php/jair/article/view/10166
https://www.jair.org/index.php/jair/article/view/10166
https://doi.org/10.1613/jair.301
https://www.jair.org/index.php/jair/article/view/10166
https://www.jair.org/index.php/jair/article/view/10166
http://mininet.org/
http://mininet.org/
https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html
https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html
https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html

[145] QoS Ryubook 1.0 documentation, 2019.
URL https://osrg.github.io/ryu-book/en/html/rest_gos.
html

[146] F. Smarra, A. Jain, R. Mangharam, A. D’Innocenzo, Data-driven switched affine
modeling for model predictive control, in: IFAC Conference on Analysis and Design
of Hybrid Systems (ADHS’ 18), IFAC, 2018, pp. 199-204.

[147] E. Smarra, G. D. Di Girolamo, V. De Iuliis, A. Jain, R. Mangharam, A. D’Innocenzo,
Data-driven switching modeling for mpc using regression trees and random forests,
Nonlinear Analysis: Hybrid Systems 36C (2020).

[148] F. Borrelli, et al., Predictive control for linear and hybrid systems, Cambridge Uni-
versity Press, 2017.

[149] L. Breiman, Classification and regression trees, Routledge, 2017.
[150] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5-32.

[151] UDOO x86, 2019.
URL https://www.udoo.org/

[152] O. 1. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, H. Arshad,
State-of-the-art in artificial neural network applications: A survey, Heliyon 4 (11)
(2018) e00938.

[153] M. Abadi, et al., TensorFlow: Large-scale machine learning on heterogeneous sys-
tems| (2015).
URL https://www.tensorflow.org/

[154] F. Chollet, et al., Keras, https://keras.io[(2015).
[155] A. I Techniques, opennn, www . opennn.net (2019).

[156] M. F. Mgller, A scaled conjugate gradient algorithm for fast supervised learning,
Aarhus University, Computer Science Department, 1990.

[157] Teach, Learn, and Make with Raspberry P1 — Raspberry Pi.
URL https://www.raspberrypi.org/

[158] Cacti.
URL https://www.cacti.net/

68

https://osrg.github.io/ryu-book/en/html/rest_qos.html
https://osrg.github.io/ryu-book/en/html/rest_qos.html
https://osrg.github.io/ryu-book/en/html/rest_qos.html
https://www.udoo.org/
https://www.udoo.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io
www.opennn.net
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.cacti.net/
https://www.cacti.net/

Publications

[1]

(2]

(3]

[4]

Enrico Reticcioli, Tommaso Campi, Valerio De Santis, An Automated Scanning Sys-
tem for the Acquisition of Non-Uniform Time-Varying Magnetic Fields, IEEE Trans-

actions on Instrumentation and Measurement, 2019

Achin Jain, Francesco Smarra, Enrico Reticcioli, Alessandro D’Innocenzo, Manfred
Morari, NeurOpt: Neural network based optimization for building energy management

and climate control, Learning for Dynamics and Control (L4DC) conference, 2020

Enrico Reticcioli, Giovanni Domenico Di Girolamo, Francsco Smarra, Alessio Car-
menini, Alessandro D’Innocenzo and Fabio Graziosi, Learning SDN traffic flow accu-
rate models to enable queue bandwidth dynamic optimization, European Conference
on Networks and Communications (EuCNC 2020) conference, 2020

Enrico Reticcioli, Giovanni Domenico Di Girolamo, Francsco Smarra, Fabio Graziosi
and Alessandro D’Innocenzo, Model Identification and Control of Priority Queueing
in Software Defined Networks, Submitted, 2021

69

70

Appendix A

Python Codes for Mininet Environment

A.1 main_controller_TOS.py

ryu.base app-manager

ryu.controller ofp_event

ryu.controller.handler CONFIG_DISPATCHER , MAIN_DISPATCHER
ryu.controller . handler set_ev_cls

ryu.ofproto ofproto_v1_3

qos_simple_switch_13 *

datapath_monitor _ TOS *

ryu.lib.packet arp

ryu.lib.packet.arp ARP_REQUEST, ARP_REPLY

ryu.lib.packet ipv4d

MainControllerMonitor (app-manager . RyuApp):
OFP_VERSIONS = [ofproto_v1_3.0OFP_VERSION]

__init__(self, =xargs, sxkwargs):

super (MainControllerMonitor , self).__init__(xargs, =xkwargs)
self .device_behaviour = SimpleSwitchl3 (xargs, =xkwargs)
self.datapath_id_list = []
self.mac_to_port = {}
STEP = 300
args = {
“step” :STEP,
“logger”:self.logger,
"dp”:self.datapath_id_list
}
self . monitor = DatapathMonitor(args)

self . monitor. start ()

@set_ev_cls(ofp_event.EventOFPSwitchFeatures , CONFIG_DISPATCHER)
switch_feature_handler (self, ev):
self.device_behaviour.switch_features_handler (ev)
datapath = ev.msg.datapath

datapath self.datapath_id_list:
self.datapath_id_list.append(datapath)

71

36 self . monitor.update(self.datapath_id_list)

37

38 @set_ev_cls(ofp_event.EventOFPPacketln , MAIN_DISPATCHER)

39 def _packet_in_handler(self, ev):

40 self .device_behaviour. _packet_in_handler(ev)

41

) @set_ev_cls(ofp_event.EventOFPDescStatsReply , MAIN_DISPATCHER)
43 def desc_stat_reply_handler(self, ev):

44 self . monitor.desc_reply (ev)

A.2 datapath_monitor_TOS.py

i| from ryu.controller import ofp_event

from ryu.controller.handler import CONFIG.DISPATCHER, MAIN_DISPATCHER
s| from ryu.ofproto import ofproto_vl_3

4/ from ryu.lib.packet import packet

s|from ryu.lib.packet import ethernet

from ryu.lib.packet import ether_types

7| from operator import attrgetter

import threading

import time

o[import datetime

W

=

)

plimport subprocess
3| import json
4l import sys

16| from Controller_.commands import =
[import numpy as np

vl from subprocess import call
20/ import random
import os

)

sinow=datetime . datetime .now ()

24| year=str (now.year)

»s| month=str (now. month)

| day=str (now.day)

27| date=year+~ —"+month+"-"+day+" _"

28| computername="jedi”

dpb_folder="/home/jedi/Dropbox/DataNetworkShared/”

| file = open(”/home/”+computername+~"/Scrivania/RyuDatapathMonitor—master/
DatalLog/”+date+” flowstat.txt”,7a”)

stringa="time”+”\ t”+”datapath”+”\ t”+”in—port”+”\ t "+ eth—dst”+”\ t "+ out —
port”+”\t”+” packets”+”\t”+”bytes"+”\ t”+”ip_dscp”+”\ t "+”SET_QUEUE\n”

»| file . write (stringa)

13| file . close ()

20

w

;5| file = open(”/home/”’+computername+"/Scrivania/RyuDatapathMonitor—-master/
DataLog/”+date+”queuestat. txt”,”a”

72

s stringa="time”+”\ t"+ 7 datapath”+”\ t”+ port_no”+”\ t"+” queue _id”"+”\ t"+”
tx_bytes”+”\t”+”tx_packets”+”\t”+” tx _errors "+”\t”+” duration_sec”+”\ t
”+”duration_nsec\n”

s7| file . write (stringa)

| file . close ()

39
2| file = open(”/home/” ’+computername+"/Scrivania/RyuDatapathMonitor—master/
DatalLog/”+date+ portstat.txt”,”a”

s stringa="time”+”\ t”+”datapath”+”\ t”+ port7+”\ t "+”rx —pkts "+”\ t "+ rx —bytes
T\t rx cerror 47\t 7+ tx —pkts T+ 7\ t 7+ tx —bytes T+ \ t "+ tx —error "+7\ t
7+7rx—dropped”+”\ t"+”tx —dropped”+”\ t "+ rx —crc—err "+”\ t"+” collisions”
+7\n”

o| file . write (stringa)

5| file . close ()

44
ss| file = open(”/home/”+computername+"/Scrivania/RyuDatapathMonitor—master/
DatalLog/”+date+” queueconfig. txt”,”a”)

s stringa="time”+”\ t”"+” datapath”+”\ t”+” queue _id”+”\ t"+” type_of _rule”+”\ t "+
“rate\n”

47| file . write (stringa)

1| file . close ()

49

—

= open(dpb_folder+”FlagData.txt”,”w”)
.write (707)
| f.close ()

50

—

51

s4| f = open(dpb_folder+”FlagU.txt”,”w”)
.write (707)
so| f.close ()

w
O
-

ss| def get_switchis ():

59 try :

60 output = subprocess.check_output(
61 “curl -X GET http ://localhost:8080/stats/switches”,
62 stderr=subprocess .STDOUT,

63 shell=True)

64 output=output[output. find (" [”):]
65 end_response=output.find (7]")

66 listl=1list (output)

67 listl [end_response]=","

68 output="".join(listl)+"]”

69 except:

70 output="No NET”

71 return output

3| def save_flow_stat(datapath):

74 datapath_in=datapath

75 mom _datapath= [0 for i in range(l6-—len(datapath))]

76 mom_datapath="".join (mom_datapath)

77 datapath=mom_datapath+datapath

78 try :

79 output = subprocess.check_output(

80 “curl -X GET http ://localhost:8080/stats/flow/”+datapath ,
81 shell=True)

73

82
83

84

86
87
88
89
90
91

92

94
95
96
97

98

99
100
101
102
103
104

105

106

107

108
109
110
111
112
113
114
115

116

117

118

119

120

i=0

output = output[output.find(”{”)+1:]

end_response = output.find (" }]}”)+2

listl=1ist (output)

listl [end_response —2]="}"

listl [end_response —1]=","

output="".join(listl)

while i<end_response:
output_i=output[i:]
i=zi+output[i:]. find("},”)+2
otp = output_i[output_i.find("{"):]
otp = otp[0:otp.find (”},”)+1]
otp =eval(otp)

data = otp
json_str = json.dumps(data)
jsonList = json.loads(json_str)

if jsonList[priority "]!=0 and jsonList[match’]. get(’
in_port’):
porta=str (jsonList[actions ’])
prc = porta.find('T: ")
#Check if there is “OUTPUT:” in the string
it prc >= 0:
porta=porta[prc+2:]
porta = int(porta[0:porta.find(]) —-1])
file = open(”/home/”+computername+"/Scrivania/
RyuDatapathMonitor —master/DatalLog/”+date+” flowstat. txt”,”a”)
now=datetime . datetime .now ()
stringa=str (now)+”\t”"+datapath_in+”\t”+str (jsonList][
"match’].get(in_port’))+”\t”+str(jsonList[match’].get(dl_dst’))+”
\t”+str (porta)+”\t”+str(jsonList[packet_count’])+”\t”+str(jsonList[
"byte_count’])+”\t None”+”\t None”+”\n”
file .write(stringa)
file .close ()
file = open(dpb_folder+”DataFlow.txt”,”a”)
file.write(stringa)
file .close ()
file = open(dpb_folder+”DataFlowPrec.txt”,”a”)
file .write(stringa)
file.close ()
if jsonList[priority "]!=0 and str(jsonList[actions’]).find
("UE: ") >=0:
SET_-QUEUE=str (str (jsonList[actions])[str(jsonList[’
actions]).find ("UE: ") +3:str(jsonList[actions]).find (",) —-1])
file = open(”/home/”+computername+"/Scrivania/
RyuDatapathMonitor —master/DatalLog/”+date+” flowstat.txt”,”a”)
now=datetime . datetime .now ()
stringa=str (now)+”\ t”+datapath_in+”\t”+str(jsonList[’
match’]. get(in_port’))+”\t7+str(jsonList[match’].get(nw._dst’))+"\
t”+”None”+”\ t”"+str (jsonList[packet_count’])+”\t"+str(jsonList[’
byte_count’])+”\t”+str(jsonList[match’].get(ip_dscp’))+"\t"+
SET_QUEUE+"\n”
file .write(stringa)
file .close ()
file = open(dpb_folder+”DataFlow.txt”,”a”)

74

124
125
126
127
128
129
130
131

132

134
135
136
137
138
139

140

142

146

149
150
151
152
153
154
155
156
157
158

159

160

161

162
163
164
165
166
167
168
169

170

3l def

file.write(stringa)

file.close ()

file = open(dpb_folder+”DataFlowPrec.txt”,”a”)
file .write(stringa)

file .close ()

except:
print “FlowStat: No NET”

save_port_stat(datapath):
datapath_in=datapath
mom _datapath= [0 for 1 in range(l6—len(datapath))]
mom_datapath="".join (mom_datapath)
datapath=mom _datapath+datapath
try :
output = subprocess.check_output(
“curl -X GET http ://localhost:8080/stats/port/”+datapath ,
shell=True)
i=0
output = output[output.find(”{”)+1:]
end_response = output.find(”}]}7)+2
listl=1ist (output)
listl [end_response —2]="}
listl [end_response —1]="."
output="".join(listl)
while i<end_response:
output_i=output[i:]
i=i+output[i:].find(”},”)+2
otp output_i[output_i.find ("{"):]
otp = otp[0:otp.find ("},”)+1]
otp =eval (otp)
data = otp
json_str = json.dumps(data)
jsonList = json.loads(json_str)
it jsonList[port_no]J!="LOCAL”:
file = open(”/home/”+computername+"/Scrivania/
RyuDatapathMonitor —master/DatalLog/”+date+” portstat.txt”,”a”)
now=datetime . datetime .now ()
stringa=str (now)+”\ t"+datapath_in+”\t"+str(jsonList[’
port_no’]1)+”\t”+str(jsonList[rx_packets])+”\t”+str(jsonList[’
rx_bytes])+”\t"+str(jsonList[rx_errors’])+”\t”+str(jsonList[’
tx_packets])+”\t7+str(jsonList[tx_bytes])+”\t”+str(jsonList[”’
tx_errors ’])+”\t”"+str(jsonList[rx_dropped’])+”\t"+str(jsonList[”’
tx _dropped’])+7\t"+str(jsonList[rx_crc_err’])+”\t +str(jsonList[’
collisions ’])+”\n”
file . write(stringa)
file .close ()
file = open(dpb_folder+”DataPort.txt”,”a”)
file.write(stringa)
file.close ()
file = open(dpb_folder+”DataPortPrec.txt”,”a”)
file.write(stringa)
file .close ()

s

75

171
172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201

202

203

204
205
206
207
208
209
210
211
212
214
215
216

217

def

def

except:
print “PortStat: No NET”

save_queue_stat (datapath):
datapath_in=datapath
mom _datapath= [0 for i in range(l6-—len(datapath))]
mom_datapath="".join (mom_datapath)
datapath=mom _datapath+datapath
try :
output = subprocess.check_output(
“curl =X GET http ://1localhost:8080/qos/queue/status/”+
datapath ,
shell=True)
1=0
output = output[output.find("ult”)+1:]

output = output[output.find(”{”)+1:]
end_response = output.find(”}]}7)+2
listl=list (output)
listl [end_response —2]="1}"
listl [end_response —1]=","
output="".join(listl)
if output[output.find(”:7)+2:0output.find (7:7)+4]!="1[]":
while i<end_response:
output_i=output[i:]
i=zi+output[i:]. find("},”)+2
otp = output_i[output_i.find("{"):]
otp = otp[0:otp.find("}.,”)+1]
otp = eval(otp)
data = otp
json_str = json.dumps(data)
jsonList = json.loads(json_str)
file = open(”/home/”+computername+"/Scrivania/
RyuDatapathMonitor —master/Datalog/”+date+” queuestat. txt”,”a”)
now=datetime . datetime .now ()
stringa=str (now)+”\ t”+datapath_in+”\t”+str(jsonList[’
port_no’]1)+”\t”+str(jsonList[queue_id’])+”\t”+str(jsonList[”’
tx_bytes])+”\t7+str(jsonList[tx_packets])+”\t”+str(jsonList[”’
tx_errors ’])+”\t"+str(jsonList[duration_sec’])+”\t"+str(jsonList][
duration_nsec’])+”\n”
file.write(stringa)
file.close ()
file = open(dpb_folder+”DataQueueStat. txt”,”a”)
file.write(stringa)
file.close ()
file = open(dpb_folder+”DataQueueStatPrec.txt”,”a”)
file . write(stringa)
file .close ()

s

except:
print “QueueStat: No NET”

save_queue_config(datapath):

datapath_in=datapath
mom _datapath= [0 for i1 in range(l6-len(datapath))]

76

219
220
221
222

223

239
240
24

242
243
244
245
246
247
248
249
250
25

253
254
255
256

257

258
259
260
261
262
263
264
265
266

267

mom _datapath="".join (mom_datapath)
datapath=mom _datapath+datapath
try :
output = subprocess.check_output(
“curl -X GET http ://localhost:8080/qos/queue/”+datapath ,
shell=True)

i=0

output=output[1:len(output)—1]

jsonList = json.loads (output)

config = jsonList[command_result’].get(details’)

for queue in config:
if queue=="2":
rate = jsonList[command _result’].get(details). get(
queue).get(config’).get(min—-rate ’)
type-of_rule="min_rate’
else:
rate = jsonList[command_result’].get(details’). get(
queue).get(config’).get(max—rate ')
type_of_rule="max _rate’
file = open(”/home/”+computername+"/Scrivania/
RyuDatapathMonitor —master/DatalLog/”+date+” queueconfig.txt”,”a”)
now=datetime . datetime .now ()
stringa=str (now)+”\ t"+datapath_in+”\t”+str (queue)+"\t"+str (
type_of_rule)+”\t”+str(rate)+"\n”
file.write(stringa)
file .close ()
file = open(dpb_folder+”DataQueueConfig.txt”,”a”)
file.write(stringa)
file .close ()
file = open(dpb_folder+”DataQueueConfigPrec.txt”,”a”)
file .write (stringa)
file .close ()

except:
print “QueueConfig: No NET”

class DatapathMonitor () :
OFP_VERSIONS = [ofproto_v1_3.0OFP_VERSION]

def __init__(self, args):
self.datapath_list = args[7dp”]

self . monitor = threading.Thread(target=self.
switch_monitor_thread)

self.delta = args[”step”]

self .logger = args[”logger”]

self.started = False
def start(self):

self . monitor. start ()

self.started = True

def update(self, dplist):

77

268
269
270

271

274
275
276
271
278
279
280
281

282

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

302

304
305
306

307

self.datapath_list = dplist

switch_monitor_thread (self):

max _rate_queue=100#Mps
max._rate_queue=max_rate_queue 1000000
minute_wait=20
Time_queue=minute_wait=60
Change_flag=Time_queue/self. delta
counter=Change _flag

c-q2=0

c_ql=1

c_q0=1

q2=np.arange (70, 101, 10)%1000000
ql=np.arange (0, 101, 10)=%1000000
q0=np.arange (0, 101, 10)%=1000000

>Wait for time alignment’
wait=self . delta/60
check_time=False
check_time==False:
now=datetime . datetime .now ()
now . minute%wait==0:
check_time=True

time . sleep (1)
>Starting Save Data’
check_time=False
flag=0
True:
check_time==False:
now=datetime . datetime .now ()
now . minute%wait==0:
check_time=True
”Save Time: “+str (now)

time . sleep (1)
f = open(dpb_folder+” FlagU.txt”,”r”)
flag=int(f.read ())

flag=0
flag==1:#check flag u file

time.sleep (10)
(”Change Queues Bw%”)

f.close ()

#Read new queue BW

i=0

u=[0,0,0]

with open(dpb_folder+"U. txt”)
line mytxt:

(line)

ul[i]=int(line)*1000000
i=i+1

78

mytxt:

w
N
< ¥

@

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

373

#Set New Queue

set_queue (727, "s2—eth2”, str(max_rate_queue
), "{\7"max_rate\”: \"7+str (u[0])+7\"}, {\"max_rate\”: \"7+str(u[l])+
PA7H, {\"min_rate\”: \"7+str(u[2])+"\"}")

f = open(dpb_folder+ " FlagU.txt”,”w”)

f.write(707)

f.close ()

else:
f.close ()
except:
print ("BW File NOT READY”)
NET=get_switchis ()
t_sleep = 0.9
if NET != "NO NET” and NET!="[.,]":
file = open(dpb_folder+”DataFlowPrec.txt”,”r”)
Prec=file .read ()
file.close ()
file = open(dpb_folder+”DataFlow.txt”,”w”)
file . write (Prec)
file .close ()
file = open(dpb_folder+”DataFlowPrec.txt”,”w”)
file.close ()

file = open(dpb_folder+”DataPortPrec.txt”,”r”)
Prec=file .read ()

file .close ()

file = open(dpb_folder+”DataPort.txt”,”w”)
file .write (Prec)

file .close ()

file = open(dpb_folder+”DataPortPrec.txt”,”w”)
file .close ()

file = open(dpb_folder+”DataQueueStatPrec.txt”,”r”)
Prec=file .read ()
file.close ()
file = open(dpb_folder+”DataQueueStat. txt”,”w”)
file . write (Prec)
file.close ()
file = open(dpb_folder+”DataQueueStatPrec.txt”,”w”)
file.close ()
file = open(dpb_folder+”DataQueueConfigPrec.txt”,”r”)
Prec=file .read ()
file.close ()
file = open(dpb_folder+”DataQueueConfig. txt”,”w”)
file . write (Prec)
file .close ()
file = open(dpb_folder+”DataQueueConfigPrec.txt”,”w”)
file.close ()
i=1
while i<NET.find (”]"):
mom NET=NET[i :]
datapath=NET[1i:i+mom NET. find (”,”)]

79

374
375
376
377
378
379

380

386

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

407

408
409
410
411
412
413
414
415
416

417

i=i+mom NET. find (7,7)+2
save_flow_stat (datapath)
save_port_stat(datapath)
save_queue_stat(datapath)
save_queue_config (datapath)
file = open(dpb_folder+”FlagData.txt”,”w”)
file.write (1)
file .close ()
while check_time==True:
now=datetime . datetime .now ()
if now.minute%wait!=0:
check_time=False
else:
time . sleep (1)
try :
f = open(dpb_folder+ " FlagU.txt”,”r”)
flag=int(f.read())
except:
flag=0
continue
try :
if flag==1:#check flag u file
print (”Change Queues Bw%”)
f.close ()
#Read new queue BW
i=0
u=[0,0,0]
with open(dpb_folder+”U.txt”) as mytxt:
for line in mytxt:
print (line)
ul[i]=int(line)*1000000
i=i+l
#Set New Queue
set_queue (727, 7s2—-eth2”, str(
max_rate_queue), "{\”"max_rate\”: \"7+str(u[0])+7\"}, {\"max_rate\”:
\"7+str(u[1])+7\”}, {\"min_rate\”: \"7+str(u[2])+"\"}")
f = open(dpb_folder+” FlagU. txt”,”w”)
f.write(707)
f.close ()
else:
f.close ()
except:
print ("INPUT NOT READY”)
continue
else:
print ”No Network”

A.3 Controller_commands.py

i| from subprocess import call
ol import threading

80

26

27

29

import subprocess
import random
import os

import time
import json
import sys

def

def

def

def

ovsdb_addr(datapath):
datapath_in=datapath
mom _datapath= [0 for i in range(l6-len(datapath))]
mom_datapath=""_.join (mom_datapath)
datapath=mom_datapath+datapath
print ”Set ovsdb on switch “"+datapath
try :
os.popen(”sudo —-S curl =X PUT —-d ’\7tcp:127.0.0.1:6632\”" http
://localhost:8080/v1.0/conf/switches/”+datapath+”/ovsdb_addr”, "w’).
write ("Ao70pad5™)
print ”\n”
time . sleep (2)
except:
print “ovsdb: ERROR”

ovssctl_set_bridge (switch_name):
print 7Set ovssctl on switch "+switch_name
try :
os.popen(”sudo —-S ovs—vsctl set Bridge "+switch_name+” protocols
OpenFlow13”, "w’).write (7 Ao70pa45”)
print ”\n”
except:
print “ovssctl_set_bridge: ERROR”

get_switchis () :
print ”Get switches id”
try :
output = subprocess.check_output(
“curl -X GET http ://localhost:8080/stats/switches”,
stderr=subprocess .STDOUT,
shell=True)
output=output[output.find ("[”):]
end_response=output. find(’]")
listl=list (output)
listl [end_response]=","
output="".join(listl)+"]”
print ”\n”
except:
output="NO NET”
return output

switch_ports_name (datapath):

datapath_in=datapath

mom _datapath= [’0" for i in range(l6-len(datapath))]
mom _datapath="".join (mom_datapath)
datapath=mom_datapath+datapath

print 7Get names on switch “+datapath

81

s4
55

56

57
58
59

60

90
91

92

94

95
96
97
98
99

100

101
102

103

s def

def

try :
output = subprocess.check_output(
“curl -X GET http ://localhost:8080/stats/portdesc/”+
datapath ,
stderr=subprocess .STDOUT,
shell=True)
i=0
output = output[output.find(”{”)+1:]
end_response = output.find(”}]}7)+2
listl=1ist (output)
listl [end_response —2]="}"
listl [end_response —1]=".,"
output="".join(listl)
names = []
while i<end_response:
output_i=output[i:]
i=i+output[i:]. find("},”)+2

otp = output_i[output_i.find("{"):]
otp = otp[0:otp.find ("},”)+1]

otp =eval (otp)

data = otp

json_str = json.dumps(data)
jsonList = json.loads(json_str)

if jsonList[port_no]=="LOCAL”:
names . append (str (jsonList['name’]))
else:
names . append(str(jsonList['name’]))
print ”\n”
return names

except:
print ”Switch port name: ERROR”

queue_rule (datapath , port_.number, ip_dscp, queue_number):
mom _datapath= [0 for i in range(l6-—len(datapath))]
mom_datapath="".join (mom_datapath)
datapath=mom_datapath+datapath
print 7Set queue rule on switch "+datapath+” on port “+port_number
try :

os.popen(”curl =X POST —-d ’"{\”match\”: {\”7ip_-dscp\”: \""+ip-dscp

+7\7}, \"actions \”:{\”queue\”: \””+queue_number+”\"}} http://

localhost:8080/qos/rules/”+datapath, 'w’).write(" Ao70pad45”)
time.sleep (0.1)
print ”\n”

except:
print ”Set queue rule: Error”

queue_rule_byIP (datapath, port_.number, ip_dscp, queue_number, ip_dst

):
mom _datapath= ['0" for i in range(l6-len(datapath))]
mom _datapath=""_.join (mom_datapath)
datapath=mom_datapath+datapath

82

104
105

106

107
108
109
110
111
112
113
114
115
116
117
118

119

120
121

122

124
125
126
127
128
129
130
131
132
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

def

def

print 7Set queue rule on switch "+datapath+” on port “+port_number
try:

os.popen(”curl =X POST —-d ’{\”match\”: {\"nw_dst\”: \""+ip_dst+”
\7, \"ip_dscp\”: \"7+ip_dscp+”\”}, \Tactions\”:{\”"queue\”: \"7+
queue_number+”\"}}’ http ://localhost:8080/qos/rules/”+datapath, "w’)
.write ("Ao70pad5™)

time . sleep (0.1)

print ”\n”
except:

print ”Set queue rule: Error”

set_queue (datapath, port_id , max_rate, queue_rate_list):
mom _datapath= [’0" for i in range(l6-len(datapath))]
mom_datapath="".join (mom_datapath)
datapath=mom_datapath+datapath
print 7Set queue on port "+port_id+” of switch “+datapath
print queue_rate_list
try :
output = subprocess.check_output(”curl -X POST -d ’{\”port_name
\7: \"7+port_id+7\”, \"type\”: \"linux—-htb\”, \"max_rate\”: \”7+
max._rate+”\”, \”queues\”: ["+queue_rate_list+”]} http://localhost
:8080/qos/queue/” +datapath ,
stderr=subprocess .STDOUT,
shell=True)
time . sleep (0.1)
print ”\n”
except:
print ”Set queue: Error”

set_-Telecom_queue (datapath , port_number, IP_flag , IP_dst):

port=port_number

mom _datapath= [0 for 1 in range(l6—len(datapath))]

mom_datapath="".join (mom_datapath)

datapath=mom _datapath+datapath

if IP_flag==True:
queue_rule_byIP (datapath
queue_rule_byIP (datapath

port, 70”7, 70", IP_dst)#Service 0
port, 787, 70", IP_dst)#Service 1

queue_rule_byIP (datapath, port, 710”7, 707, IP_dst)#Service 1
queue_rule_byIP (datapath, port, 7127, 707, IP_dst)#Service 1
queue_rule_byIP (datapath, port, 7147, 707, IP_dst)#Service 1
queue_rule_byIP (datapath, port, 7247, 707, IP_dst)#Service 3
queue_rule_byIP (datapath, port, 726”7, 70", IP_dst)#Service 3
queue_rule_byIP (datapath, port, 728”7, 707, IP_dst)#Service 3
queue_rule_byIP (datapath, port, 730”7, 707, IP_dst)#Service 3
queue_rule_byIP (datapath, port, 716”7, 717, IP_dst)#Service 2
queue_rule_byIP (datapath, port, 718”7, 717, IP_dst)#Service 2
queue_rule_byIP (datapath, port, 720”7, 17, IP_dst)#Service 2
queue_rule_byIP (datapath, port, 7227, 717, IP_dst)#Service 2
queue_rule_byIP (datapath, port, 7327, 717, IP_dst)#Service 4
queue_rule_byIP (datapath, port, 734”7, 717, IP_dst)#Service 4
queue_rule_byIP (datapath, port, 736”7, 717, IP_dst)#Service 4
queue_rule_byIP (datapath, port, 7387, 17, IP_dst)#Service 4

83

152 queue_rule_byIP (datapath, port, 748”7, 17, IP_dst)#Service 6
153 queue_rule_byIP (datapath, port, 7567, 717, IP_dst)#Service 7
154

155 queue_rule_byIP (datapath, port, 7407, 727, IP_dst)#Service 5
156 queue_rule_byIP (datapath, port, 7467, 727, IP_dst)#Service 5
157

158 it IP_flag==False:

159 #Default Queue (queue_id = 0)

160 queue_rule (datapath , port, 707, 707)#Service 0

161 queue_rule (datapath , port, 78”7, 7"0”)#Service 1

162 queue_rule (datapath , port, 7107, 70”)#Service 1

163 queue_rule (datapath , port, 7127, 707)#Service 1

164 queue_rule (datapath , port, 7147, 70”7)#Service 1

165 queue_rule (datapath , port, 7247, 70”)#Service 3

166 queue_rule (datapath , port, 7267, 70”)#Service 3

167 queue_rule (datapath , port, 7287, 70”)#Service 3

168 queue_rule (datapath , port, 730”7, 707)#Service 3

169 #Premium Queue (queue_id = 1)

170 queue_rule (datapath , port, 7167, "17)#Service 2

171 queue_rule (datapath , port, 7187, "17)#Service 2

172 queue_rule (datapath , port, 7207, "17)#Service 2

173 queue_rule (datapath , port, 7227, 17)#Service 2

174 queue_rule (datapath , port, 7327, "17)#Service 4

175 queue_rule (datapath , port, 7347, “17)#Service 4

176 queue_rule (datapath , port, 7367, "17)#Service 4

177 queue_rule (datapath , port, 7387, "17)#Service 4

178 queue_rule (datapath , port, 7487, 717)#Service 6

179 queue_rule (datapath , port, 756”7, "17)#Service 7

180 #Gold Queue (queue_id = 2)

181 queue_rule (datapath , port, 7407, 727)#Service 5

182 queue_rule (datapath , port, 7467, 727)#Service 5

A.4 qos_simple_switch_13.py

i|# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.

o #

s|# Licensed under the Apache License, Version 2.0 (the “License”);

4/ # you may not use this file except in compliance with the License.
s/# You may obtain a copy of the License at

6 #

7| # http ://www. apache.org/licenses /LICENSE-2.0

s| #

o/# Unless required by applicable law or agreed to in writing, software
o|# distributed under the License is distributed on an “AS IS” BASIS,
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

n|# implied.

3/# See the License for the specific language governing permissions and
4|# limitations under the License.

15

| from ryu.base import app_manager

7| from ryu.controller import ofp_event

84

18 ryu.controller . handler CONFIG_DISPATCHER, MAIN_DISPATCHER

19 ryu.controller . handler set_ev_cls
20 ryu.ofproto ofproto_v1_3

21 ryu.lib.packet packet

2 ryu.lib.packet ethernet

23 ryu.lib.packet ether_types

24

25 subprocess

26

28 SimpleSwitchl13 (app-manager.RyuApp):

29 OFP_VERSIONS = [ofproto_v1_3.0OFP_VERSION]

31 __init__(self, =xargs, =xkwargs):

3 super (SimpleSwitch13, self). __init__(xargs, =xkwargs)

self . mac_to_port = {}

34

35 @set_ev_cls(ofp_event.EventOFPSwitchFeatures , CONFIG_DISPATCHER)
36 switch_features_handler (self, ev):

37 datapath = ev.msg.datapath

38 ofproto = datapath.ofproto

39 parser = datapath.ofproto_parser

install table —miss flow entry

#

#

We specify NO BUFFER to max_len of the output action due to
44 # OVS bug. At this moment, if we specify a lesser number, e.g.,

128, OVS will send Packet—In with invalid buffer_id and

truncated packet data. In that case, we cannot output packets

correctly. The bug has been fixed in OVS v2.1.0.

48 match = parser.OFPMatch ()

49 actions = [parser.OFPActionOutput(ofproto.OFPP.CONTROLLER,

50 ofproto . OFPCML_NO_BUFFER)]
51 self.add_flow (datapath, O, match, actions)

add_flow (self , datapath, priority , match, actions, buffer_id=

None) :

54 ofproto = datapath.ofproto

55 parser = datapath.ofproto_parser

56

57 inst = [parser. OFPInstructionActions (ofproto.OFPIT_APPLY_ACTIONS

58 actions)]

59 buffer_id:

60 mod = parser .OFPFlowMod(datapath=datapath , buffer_id=
buffer_id ,

61 priority=priority , match=match,

62 instructions=inst , table_id=1)

63 .

64 mod = parser .OFPFlowMod(datapath=datapath , priority=priority

65 match=match, instructions=inst ,
table_id=1)

66 datapath.send_msg (mod)

85

68 @set_ev_cls(ofp_event.EventOFPPacketln , MAIN_DISPATCHER)

69 _packet_in_handler (self, ev):
70 # If you hit this you might want to increase
71 # the "miss_send_length” of your switch

72 ev.msg.msg_len < ev.msg.total_len:
73 self.logger.debug(”packet truncated: only %s of %s bytes”,

74 ev.msg.msg_len, ev.msg.total_len)
7s msg = ev.msg

76 datapath = msg. datapath

77 ofproto = datapath.ofproto

78 parser = datapath.ofproto_parser

79 in_port = msg.match[in_port’]

80

81 pkt = packet.Packet(msg. data)

82 eth = pkt.get_protocols(ethernet.ethernet)[0]
83

84 eth.ethertype == ether_types .ETH.TYPELLDP:
85 # ignore 1ldp packet

86

87 dst = eth.dst

88 src = eth.src

90 dpid = datapath.id
91 self . mac_to_port.setdefault (dpid, {})

93 # learn a mac address to avoid FLOOD next time.
94 self.mac_to_port[dpid][src] = in_port

9% dst self . mac_to_port[dpid]:
97 out_port = self.mac_to_port[dpid][dst]

9 out_port ofproto . OFPP_FLOOD
100
101 actions = [parser.OFPActionOutput(out_port)]
102
103 # install a flow to avoid packet_in next time

104 out_port != ofproto.OFPP_FLOOD:

105 match = parser.OFPMatch(in_port=in_port, eth_dst=dst,
eth_src=src)

106 # verify if we have a valid buffer_id, if yes avoid to send

both

107 # flow_mod & packet_out

108 msg. buffer_id != ofproto.OFP.NO_BUFFER:

109 self.add_flow (datapath, 1, match, actions, msg.buffer_id
)

110

111 .

12 self.add_flow (datapath, 1, match, actions)

13 data = None

114 msg. buffer_id == ofproto.OFP.NO_BUFFER:

115 data = msg.data

86

117

118

119

20

out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.
buffer_id ,
in_port=in_port, actions=actions, data
=data)
datapath .send_msg(out)

A.5 ofctl_rest.py

Copyright (C) 2012 Nippon Telegraph and Telephone Corporation.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http ://www. apache .org/licenses /LICENSE-2.0

#
#
#
#
#
#
#
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

See the License for the specific language governing permissions and
limitations under the License.

import logging

import json

import ast

from ryu.base import app-manager

from ryu.controller import ofp_event

from ryu.controller import dpset

from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls

s{from ryu.exception import RyuException

from ryu.ofproto import ofproto_v1_0
from ryu.ofproto import ofproto_vl_2
from ryu.ofproto import ofproto_v1_3
from ryu.ofproto import ofproto_vl_4
from ryu.ofproto import ofproto_v1_.5
from ryu.lib import ofctl_v1_0
from ryu.lib import ofctl_vI1_2
from ryu.lib import ofctl_v1_.3
from ryu.lib import ofctl_vl_4

s{from ryu.lib import ofctl_v1_5

from ryu.app.wsgi import ControllerBase

from ryu.app.wsgi import Response

from ryu.app.wsgi import WSGIApplication

LOG = logging.getLogger(ryu.app.ofctl_rest’)

supported ofctl versions in this restful app
supported_ofctl = {

87

44

46
47
48
49
50

51

53
54
55
56
57

58

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93

94
95

96

FoF 3 o o o o o o3 o o o o o3 o o o o o3 o o o o o H o R R HHHHH H*

H H I

ofproto_v1_0.OFP_VERSION: ofctl_v1_.0,
ofproto_v1_2 .0OFP_VERSION: ofctl_v1_2,
ofproto_v1_3 .OFP_VERSION: ofctl_v1_.3,
ofproto_v1_4 .OFP_VERSION: ofctl_vl_4 ,
ofproto_v1_5.0OFP_VERSION: ofctl_v1.5,

REST API

Retrieve the switch stats

get the list of all switches
GET /stats/switches

get the desc stats of the switch
GET /stats/desc/<dpid>

get flows desc stats of the switch
GET /stats/flowdesc/<dpid>

get flows desc stats of the switch filtered by the fields
POST /stats/flowdesc/<dpid>

get flows stats of the switch
GET /stats/flow/<dpid>

get flows stats of the switch filtered by the fields
POST /stats/flow/<dpid>

get aggregate flows stats of the switch
GET /stats/aggregateflow/<dpid>

get aggregate flows stats of the switch filtered by the fields
POST /stats/aggregateflow/<dpid>

get table stats of the switch
GET /stats/table/<dpid>

get table features stats of the switch
GET /stats/tablefeatures/<dpid>

get ports stats of the switch
GET /stats/port/<dpid>[/<port>]
Note: Specification of port number is optional

get queues stats of the switch
GET /stats/queue/<dpid >[/<port >[/<queue_id >]]
Note: Specification of port number and queue id are optional
If you want to omitting the port number and setting the queue

please specify the keyword “ALL” to the port number
e.g. GET /stats/queue/1/ALL/1

88

97
98
99
100
101
102
103

104

105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

FHoFH o o o o o o3 3 o o o o o H H R HHHEHHHEHHH FH oH o H H H H H

FH o o oH H o H O H HHH

get queues config stats of the switch
GET /stats/queueconfig/<dpid >[/<port >]
Note: Specification of port number is optional

get queues desc stats of the switch
GET /stats/queuedesc/<dpid >[/<port >[/<queue_id >]]
Note: Specification of port number and queue id are optional
If you want to omitting the port number and setting the queue id

please specify the keyword “ALL” to the port number
e.g. GET /stats/queuedesc/1/ALL/1

get meter features stats of the switch
GET /stats/meterfeatures/<dpid>

get meter config stats of the switch
GET /stats/meterconfig/<dpid >[/<meter_id >]
Note: Specification of meter id is optional

get meter desc stats of the switch
GET /stats/meterdesc/<dpid >[/<meter_id >]
Note: Specification of meter id is optional

get meters stats of the switch
GET /stats/meter/<dpid >[/<meter_id >]
Note: Specification of meter id is optional

get group features stats of the switch
GET /stats/groupfeatures/<dpid>

get groups desc stats of the switch

GET /stats/groupdesc/<dpid>[/<group_id >]

Note: Specification of group id is optional (OpenFlow 1.5 or later)
get groups stats of the switch

GET /stats/group/<dpid >[/<group_id >]

Note: Specification of group id is optional

get ports description of the switch

GET /stats/portdesc/<dpid >[/<port_no >]

Note: Specification of port number is optional (OpenFlow 1.5 or later)

Update the switch stats

add a flow entry
POST /stats/flowentry/add

modify all matching flow entries
POST /stats/flowentry/modify

modify flow entry strictly matching wildcards and priority
POST /stats/flowentry/ modify_strict

delete all matching flow entries

89

iso] # POST /stats/flowentry/delete
151
152 delete flow entry strictly matching wildcards and priority
1s3|# POST /stats/flowentry/delete_strict
154
delete all flow entries of the switch

DELETE /stats/flowentry/clear/<dpid>

#

#

#

#

#

15| #

156| #

157| #

iss|# add a meter entry

1so|# POST /stats/meterentry/add

160| #

61| # modify a meter entry

12| # POST /stats/meterentry/modify

163 #

64| # delete a meter entry

65| # POST /stats/meterentry/delete

166| #

c7|# add a group entry

3| # POST /stats/groupentry/add

160| #
modify a group entry
#
#
#
#
#
#
#
#
#
#
#
#
#
#

POST /stats/groupentry/modify

170
171
172
173 delete a group entry
74| # POST /stats/groupentry/delete
175

modify behavior of the physical port
POST /stats/portdesc/modify

176
177
178
179 modify role of controller
iso| # POST /stats/role
181
182
183 send a experimeter message
is4| # POST /stats/experimenter/<dpid>
185
186
171 class CommandNotFoundError (RyuException):
188 message = 'No such command : %(cmd)s’
189
190
vi| class PortNotFoundError (RyuException):

192 message = 'No such port info: %(port_-no)s’
193
194
05| def stats_method (method):

19 def wrapper(self, req, dpid, =args, sxkwargs):
197 # Get datapath instance from DPSet

198 try:

199 dp = self.dpset.get(int(str(dpid), 0))
200 except ValueError:

201 LOG. exception(Invalid dpid: %s’, dpid)
202 return Response(status=400)

203 if dp is None:

90

204 LOG. error ('No such Datapath: %s’, dpid)

205 return Response(status=404)

206

207 # Get lib/ofctl_x module

208 try :

209 ofctl = supported_ofctl.get(dp.ofproto.OFP_VERSION)
210 except KeyError:

211 LOG. exception (’ Unsupported OF version: %s’,

212 dp.ofproto.OFP_VERSION)

213 return Response(status=501)

214

215 # Invoke StatsController method

216 try :

217 ret = method(self, req, dp, ofctl, =args, =sxkwargs)
218 return Response(content_type="application/json’,
219 body=json .dumps(ret))

220 except ValueError:

21 LOG. exception(Invalid syntax: %s’, req.body)

22 return Response(status=400)

23 except AttributeError:

224 LOG. exception (Unsupported OF request in this version: %s’,
225 dp.ofproto .OFP_VERSION)

26 return Response(status=501)

227

28 return wrapper

31| def command_method (method) :

232 def wrapper(self, req, =args, =skwargs):

233 # Parse request json body

234 try :

235 if req.body:

236 # We use ast.literal_eval () to parse request json body
237 # instead of json.loads ().

238 # Because we need to parse binary format body

239 # in send_experimenter ().

240 body = ast.literal_eval(req.body.decode(utf-8"))
241 else:

242 body = {}

243 except SyntaxError:

244 LOG. exception(’Invalid syntax: %s’, req.body)

245 return Response(status=400)

246

247 # Get datapath_id from request parameters

248 dpid = body.get(dpid’, None)

249 if not dpid:

250 try :

251 dpid = kwargs.pop(dpid’)

252 except KeyError:

253 LOG. exception (" Cannot get dpid from request parameters’)
254 return Response(status=400)

256 # Get datapath instance from DPSet

257 (ry:

91

S
2
O

276
277
278
279
280
281
282
283

284

286
287
288
289
290
291
292
293
294
295
296
297
298
299

300

302

dp = self.dpset.get(int(str(dpid), 0))
ValueError:
LOG. exception(Invalid dpid: %s’, dpid)
Response(status=400)
dp None:
LOG. error ('No such Datapath: %s’, dpid)
Response (status =404)

Get lib/ofctl_* module

ofctl = supported_ofctl.get(dp.ofproto.OFP_VERSION)
KeyError:
LOG. exception (Unsupported OF version: version=%s’,
dp.ofproto .OFP_VERSION)
Response(status=501)

Invoke StatsController method

method(self , req, dp, ofctl, body, =xargs, =skwargs)
Response(status=200)
ValueError:
LOG. exception(Invalid syntax: %s’, req.body)
Response (status=400)
AttributeError:
LOG. exception (’ Unsupported OF request in this version: %s’,
dp.ofproto .OFP_VERSION)
Response(status=501)
CommandNotFoundError e:
LOG. exception (e.message)
Response(status=404)
PortNotFoundError e:
LOG. exception (e.message)
Response (status=404)

wrapper

StatsController (ControllerBase):
__init__(self, req, link, data, =xconfig):

super (StatsController , self). __init__(req, link, data, =xconfig)
self.dpset = data[dpset’]
self.waiters = data[waiters]

get_dpids (self , req, =%_kwargs):

dps = list(self.dpset.dps.keys())

body = json.dumps(dps)
Response(content_type="application/json’, body=body)

@stats_method
get_desc_stats (self, req, dp, ofctl, =xxkwargs):
ofctl. get_desc_stats (dp, self.waiters)

@stats_method
get_flow_desc(self, req, dp, ofctl, =sxkwargs):

92

360
361

362

364

365

flow = req.json req.body {}
ofctl.get_flow_desc(dp, self.waiters, flow)

@stats_method
get_flow_stats (self, req, dp, ofctl, =xkwargs):
flow = req.json req .body {}
ofctl. get_flow_stats (dp, self.waiters, flow)

@stats_method
get_aggregate_flow_stats (self, req, dp, ofctl, sxkwargs):
flow = req.json req .body {}
ofctl. get_aggregate_flow_stats (dp, self.waiters, flow)

@stats_method
get_table_stats (self, req, dp, ofctl, =xkwargs):
ofctl. get_table_stats (dp, self.waiters)

@stats_method
get_table_features (self, req, dp, ofctl, sxkwargs):
ofctl. get_table_features (dp, self.waiters)

@stats_method
get_port_stats (self, req, dp, ofctl, port=None, sxkwargs):
port == "ALL”:
port = None

ofctl. get_port_stats (dp, self.waiters, port)

@stats_method
get_queue_stats (self, req, dp, ofctl,
port=None, queue_id=None, s#xkwargs):
port == TALL”:
port = None

queue_id == "ALL”:
queue_id = None

ofctl.get_queue_stats(dp, self.waiters, port, queue_id)

@stats_method
get_queue_config(self, req, dp, ofctl, port=None, sxkwargs):
port == "ALL”:
port = None

ofctl . get_queue_config(dp, self.waiters, port)

@stats_method
get_queue_desc(self, req, dp, ofctl,
port=None, queue=None, =#%_kwargs):
port == "ALL”:
port = None

queue == TALL":
queue = None

93

390

ofctl.get_queue_desc(dp, self.waiters, port, queue)

@stats_method
get_meter_features (self, req, dp, ofctl, sxkwargs):
ofctl.get_meter_features (dp, self.waiters)

@stats_method

get_meter_config (self, req, dp, ofctl, meter_.id=None, =sxkwargs):

meter_id == "ALL”:
meter_id = None

ofctl . get_meter_config(dp, self.waiters, meter_id)

@stats_method
get_meter_desc (self, req, dp, ofctl, meter_-id=None, s#xkwargs):
meter_id == "ALL”:
meter_id = None

ofctl.get_meter_desc (dp, self.waiters, meter_id)

@stats_method
get_meter_stats (self, req, dp, ofctl, meter_.id=None, =xxkwargs):
meter_id == "ALL”:
meter_id = None

ofctl. get_meter_stats (dp, self.waiters, meter_id)

@stats_method
get_group_features (self, req, dp, ofctl, sxkwargs):
ofctl.get_group_features (dp, self.waiters)

@stats_method
get_group_desc (self , req, dp, ofctl, group_id=None, =xkwargs):
dp.ofproto.OFP_VERSION < ofproto_v1_5.0FP_VERSION:
ofctl . get_group_desc(dp, self.waiters)

ofctl.get_group_desc(dp, self.waiters, group_id)
@stats_method
get_group_stats (self, req, dp, ofctl, group_.id=None, =sxkwargs):
group.id == "ALL”:
group_id = None
ofctl . get_group_stats(dp, self.waiters, group_id)
@stats_method
get_port_desc (self, req, dp, ofctl, port_.no=None, xxkwargs):
dp.ofproto.OFP_VERSION < ofproto_v1_5.0OFP_VERSION:
ofctl . get_port_desc (dp, self.waiters)

ofctl. get_port_desc (dp, self.waiters, port_no)

@stats_method

94

420

425
426
427
428
429

430

436
437
438
439
440
441
442
443
444
445

446

449

456
457
458
459
460
461
462
463
464
465
466
467
468
469

470

472

473

get_role (self, req, dp, ofctl, sxkwargs):
ofctl. get_role (dp, self.waiters)

@command_method
mod_flow_entry (self , req, dp, ofctl, flow, cmd, =xkwargs):
cmd_convert = {
“add’: dp.ofproto.OFPFC_ADD,
"modify ": dp.ofproto.OFPFC_MODIFY,
"modify_strict’: dp.ofproto.OFPFC_MODIFY_STRICT,
“delete ’: dp.ofproto.OFPFC_DELETE,
“delete_strict’: dp.ofproto.OFPFC_DELETE_STRICT,
}
mod_cmd = cmd_convert. get(cmd, None)
mod_cmd None :
CommandNotFoundError (cmd=cmd)

ofctl . mod_flow_entry (dp, flow, mod_cmd)

@command_method
delete_flow_entry (self , req, dp, ofctl, flow, =xkwargs):
ofproto_v1_0.0OFP_VERSION == dp.ofproto.OFP_VERSION:
flow = {}

flow = { table_id’: dp.ofproto.OFPTT_ALL}
ofctl . mod_flow_entry (dp, flow, dp.ofproto.OFPFC_DELETE)

@command_method

mod_meter_entry (self , req, dp, ofctl, meter, cmd, xxkwargs):
cmd_convert = {

“add’: dp.ofproto .OFPMC_ADD,

"modify ": dp.ofproto.OFPMC_MODIFY,

“delete ’: dp.ofproto.OFPMC_DELETE,
}
mod_cmd = cmd_convert. get(cmd, None)

mod_cmd None:
CommandNotFoundError (cmd=cmd)

ofctl . mod_meter_entry (dp, meter, mod_cmd)

@command_method

mod_group_entry (self , req, dp, ofctl, group, cmd, s#xkwargs):
cmd_convert = {

“add’: dp.ofproto.OFPGC_ADD,

"modify ": dp.ofproto.OFPGC_MODIFY,

“delete ’: dp.ofproto.OFPGC.DELETE,
}
mod_cmd = cmd_convert. get(cmd, None)

mod_cmd None:
CommandNotFoundError (cmd=cmd)

ofctl . mod_group_entry (dp, group, mod_cmd)

@command_method

95

474 mod_port_behavior(self, req, dp, ofctl, port_config, cmd, ==

kwargs) :
475 port_.no = port_config.get(port_no’, None)
476 port_.no = int(str(port_no), 0)
477
478 port_info = self.dpset.port_state[int(dp.id)]. get(port_no)
479 port_info:
480 port_config.setdefault(hw_addr’, port_info.hw_addr)
481 dp.ofproto.OFP_VERSION < ofproto_v1_4 .OFP_VERSION:
482 port_config.setdefault(advertise’, port_info.advertised
)
483 .
484 port_config.setdefault(properties’, port_info.

properties)

485

486 PortNotFoundError (port_no=port_no)
487

488 cmd != “modify :

489 CommandNotFoundError (cmd=cmd)

490

491 ofctl . mod_port_behavior(dp, port_config)

492

493 @command_method

494 send_experimenter (self , req, dp, ofctl, exp, =xkwargs):
495 ofctl .send_experimenter (dp, exp)

496

497 @command_method

498 set_role (self, req, dp, ofctl, role, xxkwargs):
499 ofctl.set_role (dp, role)

500

501

502 RestStatsApi(app-manager.RyuApp):

503 OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION,

504 ofproto_v1_2 .0OFP_VERSION,

505 ofproto_v1_3 .0OFP_VERSION,

506 ofproto_v1_4 .OFP_VERSION,

507 ofproto_v1_5.0FP_VERSION]

508 _CONTEXTS = {

509 "dpset’: dpset.DPSet,

510 "wsgi’: WSGIApplication

511 }

51

517 __init__(self, =xargs, =xkwargs):

514 super (RestStatsApi, self). __init__(xargs, =xkwargs)
515 self.dpset = kwargs[dpset’]

516 wsgi = kwargs[wsgi’]

517 self.waiters = {}

518 self.data = {}

519 self .data[dpset’] = self.dpset

520 self.data[waiters’] = self.waiters

521 mapper = wsgi.mapper

523 wsgi.registory[StatsController’] = self.data
524 path = ’/stats’

96

525
526
527
528
529

530

532

538
539

540

542

546
547
548
549

550

556

559
560
561
562

563

564
565
566
567

568

569

570

uri = path + ’/switches’

mapper.connect(’ stats’, uri,
controller=StatsController , action="get_dpids
conditions=dict (method=["GET"]))

uri = path + ’/desc/{dpid}”’
mapper.connect(’ stats ', uri,
controller=StatsController , action=’

get_desc_stats’,
conditions=dict (method=["GET"]))

uri = path + ’/flowdesc/{dpid}”’
mapper.connect(’ stats ', uri,
controller=StatsController , action="’

get_flow_stats’,
conditions=dict (method=["GET’, "POST’]))

uri = path + */flow/{dpid}”’
mapper.connect(’ stats ’, uri,
controller=StatsController , action="’

get_flow_stats’,
conditions=dict (method=["GET’, "POST’]))

uri = path + "/aggregateflow/{dpid}’

mapper.connect(’ stats’, uri,
controller=StatsController ,
action="get_aggregate _flow_stats ',
conditions=dict (method=["GET’, 'POST’]))

uri = path + ’/table/{dpid}”’
mapper.connect(’stats ', uri,
controller=StatsController , action="

get_table_stats’,
conditions=dict (method=["GET]))

uri = path + ’/tablefeatures/{dpid}’
mapper.connect(’stats ', uri,
controller=StatsController , action="
get_table_features’,
conditions=dict (method=["GET]))

uri = path + "/port/{dpid}”’
mapper.connect(’ stats ', uri,
controller=StatsController , action="’

get_port_stats’,
conditions=dict (method=["GET’]))

uri = path + '/port/{dpid}/{port}”’
mapper.connect(’ stats ', uri,
controller=StatsController , action=’

get_port_stats ’,
conditions=dict (method=["GET"]))

uri = path + ’/queue/{dpid}”’

97

s

s

572 mapper.connect(’ stats ', uri,

573 controller=StatsController , action="
get_queue_stats ’,

574 conditions=dict (method=["GET"]))

575

576 uri = path + ’/queue/{dpid}/{port}’

577 mapper.connect(’ stats ', uri,

578 controller=StatsController , action="
get_queue_stats ’,

579 conditions=dict (method=["GET"]))

580

581 uri = path + °/queue/{dpid}/{port}/{queue_id}”’

582 mapper.connect(’ stats ', uri,

583 controller=StatsController , action="’
get_queue_stats ’,

584 conditions=dict (method=["GET]))

585

586 uri = path + '/queueconfig/{dpid}’

587 mapper.connect(’ stats ', uri,

588 controller=StatsController , action="’
get_queue_config’,

589 conditions=dict (method=["GET]))

590

591 uri = path + ’/queueconfig/{dpid}/{port}”’

592 mapper.connect(’ stats’, uri,

593 controller=StatsController , action="
get_queue_config’,

594 conditions=dict (method=["GET]))

595

596 uri = path + ’'/queuedesc/{dpid}”’

597 mapper.connect(’stats ', uri,

598 controller=StatsController , action="
get_queue_desc’,

599 conditions=dict (method=["GET’]))

600

601 uri = path + ’/queuedesc/{dpid}/{port}”’

602 mapper.connect(’ stats ', uri,

603 controller=StatsController , action="
get_queue_desc’,

604 conditions=dict (method=["GET]))

605

606 uri = path + ’'/queuedesc/{dpid}/{port}/{queue}”’

607 mapper.connect(’ stats ’, uri,

608 controller=StatsController , action="
get_queue_desc’,

609 conditions=dict (method=["GET’]))

610

611 uri = path + '/meterfeatures/{dpid}’

612 mapper.connect(’ stats ’, uri,

613 controller=StatsController , action="
get_meter_features ’,

614 conditions=dict (method=["GET"]))

615

616 uri = path + '/meterconfig/{dpid}”’

98

617 mapper.connect(’ stats’, uri,

618 controller=StatsController , action="
get_meter_config’,

619 conditions=dict (method=["GET"]))

620

621 uri = path + "/meterconfig/{dpid}/{meter_id}”’

622 mapper.connect(’ stats ', uri,

623 controller=StatsController , action="
get_meter_config’,

624 conditions=dict (method=["GET"]))

625

626 uri = path + °/meterdesc/{dpid}”’

627 mapper.connect(’ stats ', uri,

628 controller=StatsController , action="’
get_meter_desc’,

629 conditions=dict (method=["GET]))

630

631 uri = path + ’/meterdesc/{dpid}/{meter_id}”’

632 mapper.connect(’ stats ’, uri,

633 controller=StatsController , action="’
get_meter_desc’,

634 conditions=dict (method=["GET]))

635

636 uri = path + ’/meter/{dpid}’

637 mapper.connect(’ stats’, uri,

638 controller=StatsController , action="
get_meter_stats ',

639 conditions=dict (method=["GET]))

640

641 uri = path + ’/meter/{dpid}/{ meter_id}’

642 mapper.connect(’stats ', uri,

643 controller=StatsController , action="
get_meter_stats ',

644 conditions=dict (method=["GET]))

645

646 uri = path + ’'/groupfeatures/{dpid}’

647 mapper.connect(’stats ', uri,

648 controller=StatsController , action="
get_group_features ’,

649 conditions=dict (method=["GET]))

650

651 uri = path + ’/groupdesc/{dpid}”’

652 mapper.connect(’ stats ', uri,

653 controller=StatsController , action="
get_group_desc’,

654 conditions=dict (method=["GET’]))

655

656 uri = path + ’/groupdesc/{dpid}/{group_id}”’

657 mapper.connect(’ stats ', uri,

658 controller=StatsController , action="
get_group_desc’,

659 conditions=dict (method=["GET"]))

660

661 uri = path + ’/group/{dpid}”’

99

662

663

664
665
666
667

668

669
670
671
672

673

674
675
676
677

678

679
680
681
682
683
684
685
686
687

688

689
690
691
692

693

694
695
696
697

698

699
700
701
702

703

704
705
706

707

mapper.connect(’ stats’, uri,
controller=StatsController , action="’

get_group_stats ’,
conditions=dict (method=["GET"]))

uri = path + ’/group/{dpid}/{group_id}”’
mapper.connect(’ stats’, uri,
controller=StatsController , action="’

get_group._stats ',
conditions=dict (method=["GET]))

uri = path + */portdesc/{dpid}”’

mapper.connect(’ stats ', uri,
controller=StatsController , action="get_port_desc

conditions=dict (method=["GET]))

uri = path + ’/portdesc/{dpid}/{port_no}’
mapper.connect(’ stats ', uri,
controller=StatsController , action="get_port_desc

conditions=dict (method=["GET]))

uri = path + ’/role/{dpid}”’

mapper.connect(’ stats’, uri,
controller=StatsController , action="get_role’,
conditions=dict (method=["GET]))

uri = path + */flowentry/{cmd}’
mapper.connect(’ stats’, uri,
controller=StatsController , action="’
mod_flow_entry ’,
conditions=dict (method=["POST]))

uri = path + ’/flowentry/clear/{dpid}”’
mapper.connect(’stats ', uri,
controller=StatsController , action="
delete_flow_entry ’,
conditions=dict (method=['DELETE’]))

uri = path + ’/meterentry/{cmd}’
mapper.connect(’ stats ', uri,
controller=StatsController , action="
mod_meter_entry ’,
conditions=dict (method=["POST’]))

uri = path + ’'/groupentry/{cmd}’
mapper.connect(’ stats ’, uri,
controller=StatsController , action="’
mod_group_entry ’,
conditions=dict (method=["POST"]))

uri = path + ’'/portdesc/{cmd}”’

mapper.connect(’ stats ', uri,

100

708 controller=StatsController , action="
mod_port_behavior’,
709 conditions=dict (method=["POST"]))

711 uri = path + ’'/experimenter/{dpid}”’

712 mapper.connect(’ stats ', uri,

713 controller=StatsController , action="’
send_experimenter’,

714 conditions=dict (method=["POST "]))

715

716 uri = path + '/role’

717 mapper.connect(’ stats ’, uri,

718 controller=StatsController , action="set_role’,
719 conditions=dict (method=["POST"]))

720

721 @set_ev_cls ([ofp_event. EventOFPStatsReply ,

722 ofp_event. EventOFPDescStatsReply ,

723 ofp_event. EventOFPFlowStatsReply ,

724 ofp_event. EventOFPAggregateStatsReply ,

725 ofp_event.EventOFPTableStatsReply ,

726 ofp_event. EventOFPTableFeaturesStatsReply ,
727 ofp_event.EventOFPPortStatsReply ,

728 ofp_event.EventOFPQueueStatsReply ,

729 ofp_event. EventOFPQueueDescStatsReply ,

730 ofp_event. EventOFPMeterStatsReply ,

731 ofp_event. EventOFPMeterFeaturesStatsReply ,
732 ofp_event.EventOFPMeterConfigStatsReply ,
733 ofp_event. EventOFPGroupStatsReply ,

734 ofp_event. EventOFPGroupFeaturesStatsReply ,
735 ofp_event. EventOFPGroupDescStatsReply ,

736 ofp_event. EventOFPPortDescStatsReply

1, MAIN_DISPATCHER)

738 stats_reply_handler (self, ev):

739 msg = €v.msg

740 dp = msg.datapath

741

742 dp.id self . waiters:

743

744 msg . xid self.waiters[dp.id]:

745

746 lock , msgs = self.waiters[dp.id][msg. xid]

747 msgs . append (msg)

748

749 flags = 0

750 dp.ofproto.OFP_VERSION == ofproto_v1_0.0OFP_VERSION:
751 flags = dp.ofproto.OFPSF.REPLY MORE

752 dp.ofproto.OFP_VERSION == ofproto_v1_2.0FP_VERSION:
753 flags = dp.ofproto.OFPSF_REPLY_MORE

754 dp.ofproto.OFP_VERSION >= ofproto_v1_3.0OFP_VERSION:
755 flags = dp.ofproto.OFPMPF_REPLY MORE

756

757 msg. flags & flags:

759 self.waiters [dp.id][msg. xid]

101

760 lock.set ()

761

762 @set_ev_cls ([ofp_event.EventOFPSwitchFeatures ,
763 ofp_event.EventOFPQueueGetConfigReply ,
764 ofp_event.EventOFPRoleReply ,

765 1, MAIN_DISPATCHER)

766 def features_reply_handler (self, ev):

767 msg = ev.msg

768 dp = msg.datapath

769

770 if dp.id not in self.waiters:

771 return

772 it msg.xid not in self.waiters[dp.id]:

773 return

774 lock, msgs = self.waiters[dp.id][msg.xid]
775 msgs . append (msg)

776

777 del self.waiters[dp.id][msg. xid]

778 lock.set ()

A.6 rest_conf_switch.py

Copyright (C) 2012 Nippon Telegraph and Telephone Corporation.
Copyright (C) 2012 Isaku Yamahata <yamahata at private email ne jp>

AW =

FH o o o H o H o H H H K H I

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http ://www. apache.org/licenses /LICENSE-2.0

Unless required by applicable law or agreed to in writing , software
distributed under the License is distributed on an "AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied .

See the License for the specific language governing permissions and
limitations under the License.

939993

15| This module provides a set of REST API for switch configuration.
9| — Per—switch Key—Value store

21| Used by OpenStack Ryu agent.

999993

4l import json
| from six .moves import http_client

| from ryu.app.wsgi import ControllerBase
w|from ryu.app.wsgi import Response

102

from ryu.base import app-manager
sif from ryu.controller import conf_switch
»|from ryu.lib import dpid as dpid_lib

w

REST API for switch configuration

get all the switches
GET /v1.0/conf/switches

get all the configuration keys of a switch
GET /v1.0/conf/switches/<dpid>

delete all the configuration of a switch
DELETE /v1.0/conf/switches/<dpid>
PUT /v1.0/conf/switches/<dpid>/<key>

get the <key> configuration of a switch
GET /v1.0/conf/switches/<dpid>/<key>

delete the <key> configuration of a switch
DELETE /v1.0/conf/switches/<dpid>/<key>

where

#
#
#
#
#
#
#
#
#
#
#
s|# set the <key> configuration of a switch
#
#
#
#
#
#
#
#
#
<dpid >: datapath id in 16 hex

9 class ConfSwitchController (ControllerBase):

60 def __init__(self, req, link, data, #xconfig):

61 super (ConfSwitchController , self). __init__(req, link, data, ==
config)

62 self.conf_switch = data

63

64 def list_switches (self, _req, =% _kwargs):

65 dpids = self.conf_switch.dpids ()

66 body = json.dumps([dpid_lib.dpid_to_str(dpid) for dpid in dpids
D

67 return Response(content_type="application/json’, body=body)

68

69 @staticmethod

70 def _do_switch (dpid, func, ret_func):

71 dpid = dpid_lib.str_to_dpid (dpid)

72 try :

73 ret = func(dpid)

74 except KeyError:

75 return Response(status=http_client .NOT_FOUND,

76 body="no dpid is found %s’ %

77 dpid_lib.dpid_to_str (dpid))

78

79 return ret_func(ret)

80

81 def delete_switch (self, _req, dpid, =x_kwargs):

103

90

96

98

99

100

101

_delete_switch (dpid):
self.conf_switch.del_dpid (dpid)
None

_ret(_ret):
Response(status=http_client .ACCEPTED)

self. _do_switch(dpid, _delete_switch, _ret)

list_keys (self, _req, dpid, =%_kwargs):
_list_keys (dpid):
self.conf_switch.keys (dpid)

_ret(keys):
body = json.dumps(keys)
Response(content_type="application/json , body=body)

self._do_switch (dpid, _list_keys , _ret)

@staticmethod
_do_key (dpid, key, func, ret_func):
dpid = dpid_lib.str_to_dpid (dpid)

ret = func(dpid, key)
KeyError:

Response(status=http_client .NOT_FOUND,
body="no dpid/key is found %s %s’ %
(dpid_lib.dpid_to_str (dpid), key))

ret_func(ret)

set_key (self, req, dpid, key, =x_kwargs):
_set_val (dpid, key):

val = req.json req . body {}
ValueError:
Response(status=http_client .BAD REQUEST,
body="invalid syntax %s’ % req.body)
self.conf_switch.set_key (dpid, key, val)
None

_ret(_ret):
Response(status=http_client .CREATED)

self._do_key(dpid, key, _set_val, _ret)
get_key (self, _req, dpid, key, #x_kwargs):
_get_key (dpid, key):
self .conf_switch.get_key (dpid, key)
_ret(val):
Response(content_type="application/json ,

body=json .dumps(val))

self._do_key (dpid, key, _get_key, _ret)

104

136
137
138
139
140
141
142
143

144

146
147
148
149
150
151

152

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169

179
180

181

delete _key (self, _req, dpid, key, #x_kwargs):
_delete_key (dpid, key):
self.conf_switch.del_key (dpid, key)
None

_ret(_ret):
Response ()

self._do_key(dpid, key, _delete_key, _ret)

ConfSwitchAPI(app-manager.RyuApp):
_CONTEXTS = {
"conf_switch’: conf_switch.ConfSwitchSet,
}

__init__(self, =xargs, =xkwargs):

super (ConfSwitchAPI, self). __init__(xargs, =xkwargs)
self .conf_switch = kwargs[conf_switch]

wsgi = kwargs[wsgi’]

mapper = wsgi.mapper

controller = ConfSwitchController
wsgi.registory[controller.__name__] = self.conf_switch
route_name = ‘conf_switch’

uri = ’/vl1.0/conf/switches’

mapper.connect(route_name , uri, controller=controller ,

action="list_switches ',
conditions=dict (method=["GET"]))

uri += */{dpid}”’
requirements = {’dpid’: dpid_-lib .DPID_.PATTERN}
s = mapper.submapper(controller=controller , requirements=
requirements)
s.connect(route_name , uri, action='delete_switch’,
conditions=dict (method=["DELETE’ 1))

s.connect(route_name , uri, action="list_keys’,
conditions=dict (method=["GET]))

uri += */{key}’

s.connect(route_name , uri, action=’set_key’ ,
conditions=dict (method=["PUT "]))

s.connect(route_name , uri, action="get_key ,
conditions=dict (method=["GET]))

s.connect(route_name , uri, action=’delete_key ,
conditions=dict (method=["DELETE’ 1))

A.7 rest_qos.py

|‘# Copyright (C) 2014 Kiyonari Harigae <lakshmi at cloudysunnyl4 org>

105

26

29

W

FHoFH o o H H o H O HHHH

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http ://www. apache.org/licenses /LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied .

See the License for the specific language governing permissions and
limitations under the License.

import logging
import json
import re

from ryu.app import conf_switch_key as cs_key
from ryu.app.wsgi import ControllerBase

from ryu.app.wsgi import Response

from ryu.app.wsgi import route

from ryu.app.wsgi import WSGIApplication

from ryu.base import app-manager

from ryu.controller import conf_switch

from ryu.controller import ofp_event

from ryu.controller import dpset

from ryu.controller.handler import set_ev_cls
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.exception import OFPUnknownVersion

s from ryu.lib import dpid as dpid_lib

from ryu.lib import mac

from ryu.lib import ofctl_v1_0

from ryu.lib import ofctl_vl_2

from ryu.lib import ofctl_v1_.3

from ryu.lib.ovs import bridge

from ryu.ofproto import ofproto_v1_0
from ryu.ofproto import ofproto_vl_2
from ryu.ofproto import ofproto_vl_3
from ryu.ofproto import ofproto_vl_3 _parser
from ryu.ofproto import ether

from ryu.ofproto import inet

REST API

Note: specify switch and vlan group, as follows.
{switch—-id} : “all’ or switchID
{vlan-id} : 7all’ or vlanID

about queue status

106

get status of queue
GET /qos/queue/status/{switch—id}

57
58
59
60 about queues

get a queue configurations

GET /qos/queue/{switch—id}

61
62
63
set a queue to the switches
POST /qos/queue/{switch—id}

64
65
66

67 request body format:

99,99

68 {”port_name”:” <name of port>",

69 “type”: "<linux —htb or linux —-other >7,
70 “max—rate ”: ’<int >",
71 “queues ”:[{” max_rate”: "<int >, "min_rate”: "<int >7"},...]}

72
Note: This operation override
previous configurations.
Note: Queue configurations are available for
OpenvSwitch .
Note: port_name is optional argument.
If does not pass the port_.name argument,
all ports are target for configuration.

73
74
75
76
77
78
79
80
delete queue

DELETE /qos/queue/{swtich—id}

81

82

83

84 Note: This operation delete relation of qos record from
qos colum in Port table. Therefore,

QoS records and Queue records will remain.

85
86
87
88 about qos rules
89
9 get rules of qos
for no vlan

GET /qos/rules/{switch—-id}

91
92
93
04 #* for specific vlan group
os|# GET /qos/rules/{switch—id}/{vlan-id}
96
97 set a qos rules
98
QoS rules will do the processing pipeline ,

which entries are register the first table (by default table id 0)

and process will apply and go to next table.

99
100
101
102
% for no vlan

POST /qos/{switch—id}

103
104
105
* for specific vlan group

POST /qos/{switch—id }/{vlan—id}

106
107
108

FoF o o o o o o o o o o o o o o o o o o3 o o o o o3 3o o oo o3 o3 o o o oo H H R R HHHHEHHHEHE

109 request body format:

107

110

125

126

129

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161

163

FoF o o o o o o o o o o o o o o o o o3 o o o o o33 o o oo o3 o3 o o o HH R HHHHHHHHHEHE

{"priority ”: "<value >”,
"match”: {"<fieldl >”: "<valuel >, "<field2 >": "<value2 >",...},
7actions”: {"<actionl >”: "<valuel >, "<action2 >": "<value2 >",...}

}

Description
% priority field
<value>
70 to 655337

Note: When ”priority” has not been set up,
“priority: 17 is set to "priority ”.

+ match field

<field> : <value>

“in_port” : 7<int>"

Pdlosrc” o U<XX XX XX IXX XX :XX>"
Pdl_dst” o U<XXIXXIXXIXXDXX:DXX>"
”dl_type” : "<ARP or IPv4 or IPv6>”
"nw_src”’ : "<A.B.C.D/M>”

"nw_dst” : "<A.B.C.D/M>"

Tipv6o_osrc 7 U<KXXXX D XXXXDXXXX ! XXXX ! XXXX:XXXXXXXX:XXXX/M>”
Pipv6_dst”: U<KXXXX I XXXX:XXXX ! XXXX:XXXX!XXXX:XXXX:XXXX/M>"
"nw_proto”: "<TCP or UDP or ICMP or ICMPv6>"

Ttposrc” o "<int>7

Ttpodst” o U<int>”

Zip-dscp” : <int>"

% actions field

<field > : <value>

"mark”: <dscp-value>

sets the IPv4 ToS/DSCP field to tos.
“meter”: <meter—id>

apply meter entry

”queue”: <queue-—id>

register queue specified by queue-id

Note: When “actions” has not been set up,
”queue: 0” is set to “actions”.

delete a qos rules
for no vlan

DELETE /qos/rule/{switch—id}

* for specific vlan group
DELETE /qos/{switch—id }/{vlan-id}

request body format:
{"<field >":"<value >"}

<field> : <value>
7qos_id” : ’<int>" or “all”

about meter entries

108

164
165 set a meter entry
66| # POST /qos/meter/{switch—id}
167
168 request body format:
{"meter_id”: <int >,
”bands”:[{” action”: "<DROP or DSCP_REMARK>",
“flag”: "<KBPS or PKTPS or BURST or STATS”
“burst_size”: <int >,
“rate”: <int >,

“prec_level ”: <int >},...]1}

169

170

172

delete a meter entry
DELETE /qos/meter/{switch—-id}

176

request body format:
{"<field >":"<value >"}

179
180
181
<field > : <value>
"meter_id” : ’<int>”

182

3
FHoFH o o o o o R o oH o R W H HHHH

184
185
186
157| SWITCHID_PATTERN = dpid_lib .DPID_ PATTERN + 1’
15s) VLANID_ PATTERN = r’[0-9]{1.4}|all’

189
19| QOS_-TABLE_ID = 0
191
192| REST_ALL = ’all”’

193] REST_.SWITCHID = ’switch_id’

194| REST.COMMAND_RESULT = ’'command_result’
19s| REST_PRIORITY = ’priority’

06| REST_.VLANID = ’vlan_id’

197| REST_ PORT_.NAME = ’port_.name’

vs| REST_.QUEUE_TYPE = ’type’

19| REST_.QUEUE_MAX RATE = "max rate’

20| REST_.QUEUE_MIN_RATE = "min_rate’

21| REST_.QUEUES = ’queues’

22| REST-QOS = ’"qos’

23| REST_QOS_ID = ’qos_id’

204 REST_COOKIE “cookie”’

205
206| RESTMATCH = ’'match’

27| REST_IN_PORT = "in_port’
20s| REST_.SRC_MAC dl_src’
20| REST_ DST MAC = "dl_dst’
10| REST_.DL_TYPE “dl_type
11| REST_DL_TYPE_ARP = ’"ARP’
»12| REST_DL_TYPE_IPV4 "1Pv4”’
23| REST_.DL_TYPE_IPV6 = 'IPv6’
24| REST_DL_VLAN = ’dl_vlan”’
215 REST_SRC_IP = "nw_src’

216| REST_DST_IP = "nw_dst’

27| REST_SRC_IPV6 = "ipv6_src’

all’

s

109

REST_DST_IPV6 “ipv6_dst’

219| REST_ZNW_PROTO ‘nw_proto’

20| REST_ZNW_PROTO_TCP = °'TCP’

21| REST_ NW_PROTO_UDP = 'UDP’

22| REST_ NW_PROTO_ICMP = *ICMP’

23| REST_ NW_PROTO_ICMPV6 = ’ICMPv6’
24/ REST_-TP_.SRC = ’tp_src’

25| REST_TP_DST “tp_dst’

226/ REST_-DSCP = ’ip_dscp’

o
o

23| REST_ACTION = ’actions’

29| REST_ACTION_QUEUE = ’queue’
230| REST_ACTION_MARK = ’"mark’

21| REST_ACTION_METER = ’'meter’

33| REST_.METER_ID = "meter_id’

34| REST_.METER_BURST_SIZE = “burst_size’
25| REST_METER_RATE = ’rate
236| REST_METER PREC_LEVEL = ’prec_level’
237| REST_.METER_BANDS = ’bands’

233| REST_METER_ACTION_DROP = ’drop’

30| REST_METER_ACTION_REMARK = ’remark’

)

241| DEFAULT_FLOW_PRIORITY = 0
22| QOS_PRIORITY MAX = ofproto_v1_3_parser .UINTI6.LMAX - 1
243) QOS_PRIORITY_MIN = 1

245| VLANID NONE = 0

26| VLANID_MIN = 2

27| VLANID MAX = 4094

24s| COOKIE_SHIFT_VLANID = 32

50 BASE_URL = ’/qos’
251 REQUIREMENTS = {’switchid’: SWITCHID_PATTERN,
52 “vlanid’: VLANID_PATTERN}

»54|LOG = logging . getLogger(_-_name__)

RestQoSAPI(app_-manager.RyuApp) :

259 OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION,

260 ofproto_v1_2 .0OFP_VERSION,

261 ofproto_v1_3.0FP_VERSION]

262

263 _CONTEXTS = {

264 “dpset’: dpset.DPSet,

265 "conf_switch’: conf_switch.ConfSwitchSet,
266 "wsgi’: WSGIApplication}

267

268 __init__(self, =xargs, sxkwargs):

269 super (RestQoSAPI, self). __init__(xargs, =xkwargs)

271 # logger configure

110

273

274

275

276

277

279

280

281

284
285

286

QoSController.set_logger(self.logger)
self.cs = kwargs[conf_switch]

self .dpset = kwargs[dpset’]

wsgi = kwargs[wsgi’]

self.waiters = {}

self.data = {}

self.data[dpset’] = self.dpset

self.data[waiters’] = self.waiters
wsgi.registory ["QoSController’] = self.data
wsgi.register (QoSController, self.data)

stats_reply_handler (self, ev):
msg = ev.msg
dp = msg.datapath

dp.id self. waiters :

msg . xid self.waiters[dp.id]:

lock, msgs = self.waiters[dp.id][msg.xid]
msgs . append (msg)

flags = 0
dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION

dp.ofproto.OFP_VERSION == ofproto_v1_2.0FP_VERSION:

flags = dp.ofproto.OFPSF.REPLY MORE
dp.ofproto.OFP_VERSION == ofproto_v1_3.0OFP_VERSION:
flags = dp.ofproto.OFPMPF_REPLY MORE

msg. flags & flags:

self.waiters [dp.id][msg. xid]
lock.set ()

@set_ev_cls(conf_switch.EventConfSwitchSet)
conf_switch_set_handler (self, ev):
ev.key == cs_key .OVSDB_ADDR:
QoSController.set_ovsdb_addr(ev.dpid, ev.value)

QoSController . LOGGER. debug ("unknown event: %s”, ev)
@set_ev_cls(conf_switch.EventConfSwitchDel)
conf_switch_del_handler (self, ev):
ev.key == cs_key.OVSDB_ADDR:
QoSController.delete_ovsdb_addr (ev.dpid)
QoSController . LOGGER. debug ("unknown event: %s”, ev)
@set_ev_cls(dpset.EventDP, dpset.DPSET_EV_DISPATCHER)
handler_datapath (self, ev):
ev.enter:

QoSController.regist_ofs (ev.dp, self.CONF)

QoSController.unregist_ofs (ev.dp)

111

\

326

349

for OpenFlow versionl .0

@set_ev_cls(ofp_event.EventOFPFlowStatsReply , MAIN_DISPATCHER)
stats_reply_handler_v1_0(self, ev):
self.stats_reply_handler (ev)

for OpenFlow versionl.2 or later
@set_ev_cls(ofp_event.EventOFPStatsReply , MAIN_DISPATCHER)
stats_reply_handler_v1_2(self, ev):
self .stats_reply_handler (ev)

for OpenFlow versionl.2 or later

@set_ev_cls(ofp_event. EventOFPQueueStatsReply , MAIN_DISPATCHER)
queue_stats_reply_handler_v1_2 (self, ev):
self .stats_reply_handler (ev)

for OpenFlow versionl.2 or later
@set_ev_cls(ofp_event.EventOFPMeterStatsReply , MAIN_DISPATCHER)
meter_stats_reply_handler_v1_2(self, ev):
self .stats_reply_handler (ev)

QoSOfsList(dict):

__init__(self):
super (QoSOfsList, self).__init__ ()

get_ofs (self, dp-id):
len(self) ==
ValueError(’qos sw is not connected.’)

dps = {}
dp_id == REST.ALL:

dps = self

dpid = dpid_lib.str_to_dpid (dp-id)
ValueError(’ Invalid switchID.")

dpid self:
dps = {dpid: self[dpid]}

msg = 'qos sw is not connected. : switchID=%s" % dp-id
ValueError (msg)

dps
QoSController(ControllerBase):

_OFS_LIST = QoSOfsList ()
JLOGGER = None

112

390

392

396

426

428
429
430

431

433

__init__(self, req, link, data, =xconfig):

super (QoSController, self).__init__(req, link, data, sxconfig)
self .dpset = data[dpset’]

self.waiters = data[waiters]

@classmethod
set_logger(cls, logger):
cls . LOGGER = logger
cls . LOGGER. propagate = False
hdlr = logging.StreamHandler ()
fmt_str = "[QoS][%(levelname)s] %(message)s’
hdlr.setFormatter (logging . Formatter (fmt_str))
cls . LOGGER. addHandler (hdlr)

@staticmethod
regist_ofs (dp, CONF):
dp.id QoSController. _OFS_LIST:

dpid_str = dpid_lib.dpid_to_str (dp.id)

f_ofs = QoS(dp, CONF)
f_ofs.set_default_flow ()
OFPUnknownVersion message :
QoSController . LOGGER. info (" dpid=%s: %s
dpid_str , message)

QoSController. OFS_LIST.setdefault(dp.id, f_ofs)
QoSController . LOGGER. info ("dpid=%s: Join qos switch.’,

dpid_str)
@staticmethod
unregist_ofs (dp):
dp.id QoSController. _OFS_LIST:

QoSController. OFS_LIST[dp.id]
QoSController . LOGGER. info ("dpid=%s: Leave qos switch.’,
dpid_lib.dpid_to_str(dp.id))

@staticmethod
set_ovsdb_addr (dpid, value):
ofs = QoSController. _OFS_LIST. get(dpid, None)
ofs None :
ofs.set_ovsdb_addr (dpid, value)

@staticmethod
delete_ovsdb_addr (dpid):
ofs = QoSController. _OFS_LIST. get(dpid, None)
ofs.set_ovsdb_addr (dpid, None)

@route (" qos_switch’, BASE.URL + ’/queue/{switchid}’,
methods=["GET], requirements=REQUIREMENTS)
get_queue (self , req, switchid, =%_kwargs):
self. _access_switch(req, switchid, VLANID_NONE,

113

434 “get_queue ', None)

435

436 @route (" qos_switch’, BASE.URL + ’/queue/{switchid}’,

437 methods=["POST’], requirements=REQUIREMENTS)

438 def set_queue(self, req, switchid, =%_kwargs):

439 return self._access_switch(req, switchid, VLANIDNONE,
440 “set_queue ', None)

441

442 @route (’qos_switch’, BASE.URL + ’/queue/{switchid}’,

443 methods=["DELETE’], requirements=REQUIREMENTS)

444 def delete_queue (self, req, switchid, #x_kwargs):

445 return self._access_switch(req, switchid , VLANIDNONE,
446 “delete_queue’, None)

447

448 @route (" qos_switch’, BASE.URL + ’/queue/status/{switchid}’,
449 methods=["GET], requirements=REQUIREMENTS)

450 def get_status (self, req, switchid, #x_kwargs):

451 return self._access_switch(req, switchid , VLANIDNONE,
452 ‘get_status’, self.waiters)
453

454 @route (" qos_switch’, BASE.URL + °/rules/{switchid}’,

455 methods=["GET], requirements=REQUIREMENTS)

456 def get_qos(self, req, switchid, =%_kwargs):

457 return self._access_switch(req, switchid , VLANIDNONE,
458 ‘get_qos’, self.waiters)

459

460 @route(’qos_switch’, BASE.URL + ’/rules/{switchid }/{vlanid}’,
461 methods=["GET], requirements=REQUIREMENTS)

462 def get_vlan_qos(self, req, switchid, vlanid, =%_kwargs):
463 return self._access_switch(req, switchid, vlanid,

464 ‘get_qos’, self.waiters)

465

466 @route(’qos_switch’, BASE.URL + °/rules/{switchid}’,

467 methods=["POST’], requirements=REQUIREMENTS)

468 def set_qos(self, req, switchid, =#x_kwargs):

469 return self._access_switch(req, switchid, VLANID.NONE,
470 ‘set_qos’, self.waiters)

471

an @route (qos_switch’, BASEURL + ’/rules/{switchid}/{vlanid}’,
473 methods=["POST’], requirements=REQUIREMENTS)

474 def set_vlan_qos(self, req, switchid, vlanid, =%_kwargs):
475 return self._access_switch(req, switchid, vlanid,

476 ‘set_qos’, self.waiters)

477

478 @route (' qos_switch’, BASE.URL + ’/rules/{switchid}’,

479 methods=['DELETE"], requirements=REQUIREMENTS)

480 def delete_qos(self, req, switchid, =x_kwargs):

481 return self._access_switch(req, switchid, VLANIDNONE,
482 “delete_qos ', self.waiters)
483

484 @route (' qos_switch’, BASE.URL + ’/rules/{switchid }/{vlanid}’,
485 methods=["DELETE’], requirements=REQUIREMENTS)

486 def delete_vlan_qos(self, req, switchid, vlanid, =%_kwargs):
487 return self._access_switch(req, switchid, vlanid,

114

488 “delete_qos ', self.waiters)

489

490 @route (" qos_switch’, BASE.URL + ’/meter/{switchid}’,

491 methods=["GET], requirements=REQUIREMENTS)

492 get_meter (self , req, switchid, =x_kwargs):

493 self. _access_switch(req, switchid, VLANID_NONE,
494 ‘get_meter’, self.waiters)

495

496 @route (" qos_switch’, BASE.URL + ’/meter/{switchid}’,

497 methods=["POST’], requirements=REQUIREMENTS)

498 set_meter (self , req, switchid, =#x_kwargs):

499 self. _access_switch(req, switchid, VLANIDNONE,
500 set_meter ', self.waiters)

501

502 @route (" qos_switch’, BASE.URL + °/meter/{switchid}’,

503 methods=["DELETE’], requirements=REQUIREMENTS)

504 delete_meter (self, req, switchid, =x_kwargs):

505 self. _access_switch(req, switchid, VLANIDNONE,
506 “delete_meter’, self.waiters)
507

508 _access_switch(self, req, switchid, vlan_id, func, waiters):
509 :

510 rest = req.json req.body {}

511 ValueError:

512 QoSController . LOGGER. debug(invalid syntax %s’, req.body)
513 Response(status=400)

6 dps = self._OFS_LIST. get_ofs(switchid)

1

1

1

517 vid = QoSController. _conv_toint_vlanid (vlan_id)

518 ValueError message :

519 Response(status =400, body=str (message))

520

521 msgs = |[]

522 f_ofs dps.values () :

523 function = getattr (f_ofs, func)

524 .

525 waiters None:

526 msg = function(rest, vid, waiters)

527 :

528 msg = function(rest, vid)

529 ValueError message :

530 Response(status =400, body=str (message))
531 msgs . append (msg)

533 body = json.dumps(msgs)

534 Response(content_type="application/json’, body=body)
536 @staticmethod

537 _conv_toint_vlanid (vlan_id):

538 vlan_id != REST_ALL:

539 vlan_id = int(vlan_id)

540 (vlan_.id != VLANIDNONE

541 (vlan_id < VLANID_MIN VLANID MAX < vlan_id)):

115

542

543

546

586
587
588
589
590
591
592

593

VLANID_MIN,

VLANID_MAX)

QoS(objec

msg = ’Invalid {vlan_id} value. Set [%d-%d]’

ValueError (msg)
vlan_id

t):

_OFCTL = {ofproto_v1_0.0OFP_VERSION: ofctl_v1_0,
ofproto_v1_2 .0OFP_VERSION: ofctl_v1_2,
ofproto_v1_3 .OFP_VERSION: ofctl_v1_.3}

__init_

_(self, dp, CONF):

super (QoS, self). __init__ ()

self. vl

an_list = {}

self . vlan_list [VLANIDNONE] = 0 # for VLAN=None

self.dp

self .version = dp.ofproto.OFP_VERSION
self.queue_list = {}
self .CONF = CONF

self.ovsdb_addr = None
self .ovs_bridge = None
.version self . _OFCTL:

self

OFPUnknownVersion(version=self . version)

self.ofctl = self. OFCTL[self.version]

set_default_flow (self):
self.version == ofproto_v1_0.OFP_VERSION:
cookie = 0
priority = DEFAULT_FLOW_PRIORITY
actions = [{ type’: “GOTO.TABLE’,
“table_id’: QOS.TABLE.ID + 1}]
flow = self._to_of_flow (cookie=cookie ,

priority=priority ,
match={},
actions=actions)

cmd = self.dp.ofproto.OFPFC_ADD
self.ofctl. mod_flow_entry(self.dp, flow, cmd)

set_ovsdb_addr(self, dpid, ovsdb_addr):

easy
_proto ,

check if the address format valid
_host, _port = ovsdb_addr.split(’ :")

old_address = self.ovsdb_addr

old_

address == ovsdb_addr:

ovsdb_addr None:

116

% (

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

611

self.ovs_bridge:
self.ovs_bridge.del_controller ()
self .ovs_bridge = None

self.ovsdb_addr = ovsdb_addr

self.ovs_bridge None:
ovs_bridge = bridge.OVSBridge(self .CONF, dpid, ovsdb_addr)

self.ovs_bridge = ovs_bridge
ovs_bridge . init ()
ValueError(ovsdb addr is not available.’)
_update_vlan_list(self, vlan_list):
vlan_id self.vlan_list.keys():
vlan_id VLANID_NONE vlan_id vlian_list:
self.vlan_list[vlan_id]
_get_cookie(self , vlan_id):
vlan_id == REST_ALL:

vlan_ids = self.vlan_list.keys()

vlan_ids = [vlan_id]

cookie_list = []
vlan_id vlan_ids :

self . vlan_list.setdefault(vlan_id, 0)

self.vlan_list[vlan_id] += 1

self.vlan_list[vlan_id] &= ofproto_vl_3_parser.UINT32.MAX

cookie = (vlan_id << COOKIE_SHIFT_VLANID) + \
self.vlan_list[vlan_id]

cookie_list.append ([cookie, vlan_id])

cookie_list

@staticmethod
_cookie_to_qosid (cookie):
cookie & ofproto_vl_3_parser.UINT32.MAX

REST command template
rest_.command (func) :
rest.command (*args , sxkwargs):
key, value = func(xargs, ssxkwargs)
switch_id = dpid_lib.dpid_to_str(args[0].dp.id)
{REST_SWITCHID: switch_id ,
key: value}
rest.command

@rest_command
get_status (self, req, vlan_id, waiters):
self.version == ofproto_v1_0.OFP_VERSION:

ValueError(’ get_status operation is not supported’)

msgs = self.ofctl.get_queue_stats(self.dp, waiters)

117

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

700

REST_.COMMAND_RESULT, msgs

@rest_command
get_queue (self , rest, vlan_id):
len(self.queue_list):
msg = { result’: “success’,
“details’: self.queue_list}

msg = { result’: ’failure’,
“details’: “Queue is not exists.’}

REST_.COMMAND_RESULT, msg

@rest_.command
set_queue (self , rest, vlan_id):

self.ovs_bridge None:
msg = { result’: “failure’,
“details’: ’ovs_bridge is not exists’}

REST_ COMMAND RESULT, msg

self . queue_list.clear ()
queue_type = rest.get(REST.QUEUE.TYPE, ’linux—htb")
parent_max_rate = rest.get(REST. QUEUE.MAX RATE, None)
queues = rest.get (REST.QUEUES, [])
queue_id = 0
queue_config = []
queue queues :
max_rate = queue.get (REST. QUEUE.MAX RATE, None)
min_rate = queue.get(REST.QUEUE.MIN_RATE, None)
max_rate None min_rate None:
ValueError(’Required to specify max_rate or
min_rate ')

config = {}
max _rate None:
config['max—rate’] = max_rate
min_rate None:
config['min-rate’] = min_rate

len(config):

queue_config.append(config)
self.queue_list[queue_id] = { config’: config}
queue_id += 1

rest . get (REST. PORT_.NAME, None)

port_name

vif_ports = self.ovs_bridge.get_port_name_list()
port_name None:
port_name vif_ports:
ValueError('%s port is not exists’ % port_-name)
vif_ports = [port_name]
port_name vif_ports:

self.ovs_bridge.set_qos (port_.name, type=queue_-type,
max._rate=parent_max_rate ,

118

736

740
741
742

743

745

746

747

749

queues=queue_config)
Exception msg:
ValueError (msg)

msg = {’result’: success
“details’: self.queue_list}

REST_.COMMAND_RESULT, msg

_delete_queue (self):

self.ovs_bridge None:
False
vif_ports = self.ovs_bridge.get_external_ports ()
port vif_ports:
self.ovs_bridge.del_qos(port.port_name)
True

@rest_command
delete_queue (self , rest, vlan_id):
self . queue_list.clear ()
self. _delete_queue ():
msg = ‘success’

msg *failure”’

REST_.COMMAND_RESULT, msg

@rest_command
set_qos (self, rest, vlan_id, waiters):

msgs = []
cookie_list = self._get_cookie(vlan_.id)
cookie , vid cookie_list:
msg = self. _set_qos(cookie, rest, waiters, vid)

msgs . append (msg)
REST_COMMAND RESULT, msgs

_set_qos (self , cookie, rest, waiters, vlan_id):
match_value = rest[REST MATCH]

vlan_id:

match_value [REST DL_VLAN] = vlan_id

priority = int(rest.get(REST_.PRIORITY, QOS_PRIORITY_MIN))
(QOS_PRIORITY-MAX < priority):
ValueError (’Invalid priority value. Set [%d-%d]’
% (QOS_PRIORITY_MIN, QOS_PRIORITY_MAX))

match = Match.to_openflow (match_value)

actions = []
action = rest.get(REST_ACTION, None)
action None:
REST_ACTION_MARK action :
actions .append({ type’: 'SET_FIELD’,

119

55

756

757

759
760
761
762
763
764
765
766
767
768
769
770
771

772

774
775
776
777
778
779

780

782

789
790

791

793
794
795
796

797

798
799
800
801
802
803
804
805
806

807

"field’: REST_DSCP,
“value’: int(action [REST_ACTION.MARK]) })
REST_ACTION_METER action:
actions .append({ type’: 'METER’,
"meter_id’: action [REST_ACTION_METER]})
REST_ACTION_QUEUE action :
actions .append({ type’: ’'SET_.QUEUE’,
“queue_id’: action [REST_ACTION_QUEUE]})

actions .append ({ type’: 'SET_QUEUE’,
“queue_id’: 0})

actions .append({ type’: 'GOTO.TABLE’,
“table_id ’: QOS_TABLE.ID + 1})
flow = self._to_of_flow (cookie=cookie, priority=priority ,
match=match, actions=actions)

cmd = self.dp.ofproto.OFPFC_ADD
self.ofctl . mod_flow_entry(self.dp, flow, cmd)
ValueError(’ Invalid rule parameter.’)

gos_id = QoS. _cookie_to_qosid (cookie)
msg = { result’: ’success’,
“details’: "QoS added. : qos_id=%d’ % qos-id}

vlan_id != VLANID_NONE:
msg. setdefault (REST_.VLANID, vlan_id)
msg

@rest_.command
get_qos (self, rest, vlan_id, waiters):
rules = {}
msgs = self.ofctl.get_flow_stats(self.dp, waiters)
str(self.dp.id) msgs:
flow_stats = msgs[str(self.dp.id)]
flow_stat flow_stats:
flow_stat[table_id’ '] != QOS_TABLE.D:

priority = flow_stat [REST_PRIORITY]
priority != DEFAULT_FLOW_PRIORITY :
vid = flow_stat [RESTMATCH]. get (REST.DL_VLAN,
VLANID_NONE)

vlan_id == REST_ALL vlan_id == vid:
rule = self. _to_rest_rule (flow_stat)
rules.setdefault(vid, [])
rules[vid].append(rule)

get_data = []
vid, rule rules .items () :
vid == VLANID_NONE:
vid_data = {REST-QOS: rule}

120

839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

856

vid_data = {REST_-VLANID: vid, RESTQOS: rule}
get_data.append(vid_data)

REST_.COMMAND _RESULT, get_data

@rest_command
delete_qos (self, rest, vlan_id, waiters):

rest [REST_QOS_ID] == REST_ALL:
qos-id = REST_ALL

gos_id = int(rest[REST_QOS_ID])
ValueError(’Invalid qos id.")

vlian_list = []
delete_list = []

msgs = self.ofctl.get_flow_stats(self.dp, waiters)
str(self.dp.id) msgs:
flow_stats = msgs[str(self.dp.id)]
flow_stat flow_stats :
cookie = flow_stat [REST_.COOKIE]
ruleid = QoS. _cookie_to_qosid (cookie)
priority = flow_stat [REST_PRIORITY]
dl_vlan = flow_stat [RESTMATCH]. get (REST_.DL_VLAN,

VLANID_NONE)
priority != DEFAULT_FLOW_PRIORITY :
((qos-id == REST_ALL qos_id == ruleid)
(vlan_id == dl_vlan vlan_id == REST_ALL))
match = Match.to_mod_openflow (flow _stat[
REST MATCH])

delete_list.append ([cookie, priority , match])

dl_vlan vlan_list:
vlan_list.append(dl_vlan)

self. _update_vlan_list(vlan_list)

len(delete_list) ==

msg_details = QoS rule is not exist.’
qgos_id != REST_ALL:
msg_details += ~ : QoS ID=%d’ % qos_id
msg = { result’: ’failure’,
“details’: msg_details}

cmd = self.dp.ofproto.OFPFC_DELETE_STRICT

actions = []
delete_ids = {}
cookie, priority , match delete_list:
flow = self. _to_of_flow (cookie=cookie, priority=priority

121

858
859
860
861
862
863
864
865
866
867
868
869

870

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

910

match=match, actions=actions)
self.ofctl . mod_flow_entry(self.dp, flow, cmd)

vid = match. get (REST.DL_VLAN, VLANID NONE)

rule_id = QoS. _cookie_to_qosid (cookie)

delete_ids .setdefault(vid, ')

delete_ids[vid] += ((%d’ delete_ids[vid] == ~
",%d’) % rule_id)

msg = []
vid, rule_ids delete_ids .items () :
del_msg = {’result’: ’“success’,

“details ’: 7 deleted. : QoS ID=%s’ % rule_ids

vid != VLANID_NONE:
del_msg.setdefault (REST_-VLANID, vid)
msg.append(del_msg)

REST_.COMMAND _RESULT, msg

@rest_.command
set_meter (self , rest, vlan_id, waiters):
self.version == ofproto_v1_0.OFP_VERSION:
ValueError(’set_meter operation is not supported’)

msgs = []

msg = self._set_meter(rest, waiters)

msgs . append (msg)
REST_.COMMAND_RESULT, msgs

_set_meter (self, rest, waiters):
cmd = self.dp.ofproto.OFPMC_ADD

self.ofctl. mod_meter_entry(self.dp, rest, cmd)

ValueError(’Invalid meter parameter.’)

msg = { result’: ’success’,
details’: *Meter added. : Meter ID=%s’ %
rest [REST,METER,ID]}
msg

@rest_command
get_meter (self, rest, vlan_id, waiters):
(self.version == ofproto_v1_0.OFP_VERSION
self.version == ofproto_v1_2.0FP_VERSION) :
ValueError(’ get_meter operation is not supported’)

msgs = self.ofctl.get_meter_stats(self.dp, waiters)
REST_.COMMAND_RESULT, msgs

@rest_.command
delete _meter (self, rest, vlan_id, waiters):
(self.version == ofproto_v1_0.OFP_VERSION

122

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

932

934
935
936
937
938
939
940

941

943
944
945

946

948
949
950

951

953
954
955
956
957
958
959
960
961
962
963

964

self.version == ofproto_v1_2.0FP_VERSION) :

ValueError (delete_meter operation is not
cmd = self.dp.ofproto.OFPMC_DELETE
self.ofctl. mod_meter_entry(self.dp, rest, cmd)

ValueError(’Invalid meter parameter.’)
{’result’: ’success’,
“details ’: *Meter deleted.
rest [REST_-METER_ID]}

REST_.COMMAND_RESULT, msg

msg =
Meter ID=%s’ %

_to_of_flow (self , cookie, priority , match, actions):
flow = { cookie’: cookie,

‘priority *: priority ,

“flags’: O,

>idle_timeout’: 0,

>hard_timeout’: 0,

"match’: match,

“actions’: actions}

flow

_to_rest_rule (self , flow):
ruleid = QoS. _cookie_to_qosid (flow [REST_-COOKIE])
rule = {REST_QOS.ID: ruleid}
rule . update ({REST_PRIORITY: flow [REST_PRIORITY]})
rule .update (Match. to_rest (flow))
rule .update (Action.to_rest (flow))

rule

Match(object):

_CONVERT = {REST DL_TYPE:

{REST_DL_TYPE_ARP:
REST_DL_TYPE_IPV4:
REST_DL_TYPE_IPV6:

REST NW_PROTO:

{REST_NW_PROTO_TCP:
REST NW_PROTO_UDP:

REST_NW_PROTO_ICMP:
REST_NW_PROTO_ICMPV6:

@staticmethod
to_openflow (rest):

__inv_combi (msg):
ValueError(’ Inval

__inv_2andl (xargs):
__inv_combi ("%s=%s and

ether .ETH.TYPE_ARP,
ether .ETH_TYPE_IP,
ether . ETH.TYPE_IPV6},

inet .IPPROTO_TCP,
inet .IPPROTO_UDP,
inet .IPPROTO_ICMP,
inet .IPPROTO_ICMPV6}}

id combination: [%s]’

s’ % (args[0], args[1],

123

supported ’)

% msg)

args [2]))

965 __inv_2and2 (xargs):
966 __inv_combi ('%s=%s and %s=%s’ % (
967 args [0], args[1], args[2], args[3]))

969 __inv_landl (% args):
970 __inv_combi('%s and %s’ % (args[0], args[1]))

972 __inv_land2 (xargs):
973 __inv_combi ("%s and %s=%s’ % (args[0], args[1], args[2]))

975 match = {}

976

977 # error check

978 dl_type = rest.get(REST.DL_TYPE)

979 nw_proto = rest.get (REST_NW_PROTO)

980 dl_type None:

081 dl_type == REST_.DL_TYPE_ARP:

982 REST_SRC_IPV6 rest:

983 __inv_2andl1 (

984 REST.DL_TYPE, REST.DL_.TYPE_ARP, REST_SRC_IPV6)
085 REST_DST_IPV6 rest:

986 __inv_2andl1 (

987 REST_DL_.TYPE, REST_DL_TYPE_ARP, REST_DST_IPV6)
988 REST_DSCP rest:

989 __inv_2andl1 (

990 REST_DL_TYPE, REST.DL_TYPE_ARP, REST_DSCP)

991 nw_proto:

992 __inv_2andl (

993 REST_DL_TYPE, REST_DL_TYPE_ARP, REST NW_PROTO)
994 dl_type == REST_.DL_TYPE_IPV4:

995 REST_SRC_IPV6 rest:

996 __inv_2andl (

997 REST_DL_.TYPE, REST_DL_TYPE_IPV4, REST_SRC_IPV6)
998 REST_DST_IPV6 rest:

999 __inv_2andl1 (

1000 REST_DL_TYPE, REST_DL_TYPE_IPV4, REST_DST_IPV6)
1001 nw_proto == REST_NW_PROTO_ICMPV6:

1002 __inv_2and2(

1003 REST_DL_TYPE, REST_DL_TYPE_IPV4,

1004 REST_NW_PROTO, RESTNW_PROTO_ICMPV6)

1005 dl_type == REST_DL_TYPE_IPV6:

1006 REST_SRC_IP rest:

1007 __inv_2andl (

1008 REST DL_TYPE, REST_.DL_TYPE_IPV6, REST_SRC_IP)
1009 REST_DST_IP rest:

1010 __inv_2andl (

1011 REST_DL_TYPE, REST_DL_TYPE_IPV6, REST_DST_IP)
1012 nw_proto == REST_NW_PROTO_ICMP:

1013 __inv_2and2 (
1014 REST_DL_TYPE, REST.DL_TYPE_IPV6,

1015 REST NW_PROTO, REST_NW_PROTO_ICMP)
1016 .
1017 ValueError ('Unknown dl_type : %s’ % dl_type)

1018

124

REST_SRC_IP rest:

REST_SRC_IPV6 rest:

__inv_land1 (REST_SRC_IP, REST_SRC_IPV6)
REST_DST_IPV6 rest:

__inv_landl (REST_SRC_IP, REST_DST_IPV6)
nw_proto == REST_NW_PROTO_ICMPV6:

__inv_land2(

REST_SRC_IP, RESTNW_PROTO, REST_NW_PROTO_ICMPV6

rest [REST_.DL_.TYPE] = REST_DL_TYPE_IPV4
REST_DST_IP rest:
REST_SRC_IPV6 rest:
__inv_land1 (REST_DST_IP, REST_SRC_IPV6)
REST_DST_IPV6 rest:
__inv_land1 (REST_DST_IP, REST_DST_IPV6)
nw_proto == REST_NW_PROTO_ICMPV6:
__inv_land2(
REST_DST_IP, RESTNW_PROTO, REST_NW_PROTO_ICMPV6

rest [REST.DL_.TYPE] = REST_DL_TYPE_IPV4
REST_SRC_IPV6 rest:
nw_proto == REST_NW_PROTO_CMP:
__inv_land2(
REST_SRC_IPV6, RESTNW_PROTO, RESTNW_PROTO_ICMP

rest [REST.DL_.TYPE] = REST_DL_TYPE_IPV6
REST_DST_IPV6 rest:
nw_proto == REST_NW_PROTO_ICMP:
__inv_land2(
REST_DST_IPV6, RESTNW_PROTO, RESTNW_PROTO_ICMP

rest [REST_.DL.TYPE] = REST_DL_TYPE_IPV6

REST_DSCP rest:
Apply dl_type ipv4, if doesn’t specify dl_type
rest [REST.DL_.TYPE] = REST_DL_TYPE_IPV4

nw_proto == REST_NW_PROTO_ICMP:
rest [REST_.DL.TYPE] = REST_DL_TYPE_IPV4
nw_proto == REST NW_PROTO_ICMPV6:
rest [REST_.DL_.TYPE] = REST_DL_TYPE_IPV6
nw_proto == REST_NW_PROTO_TCP \
nw_proto == REST_NW_PROTO_UDP:
ValueError(’'no dl_type was specified’)

ValueError (" Unknown nw_proto: %s’ % nw_proto)
key, value rest.items () :
key Match . CONVERT:
value Match . CONVERT[key]:
match. setdefault (key, Match. CONVERT[key][value])

ValueError(’Invalid rule parameter. : key=%s’
% key)

125

1068

1069

1079

1080

1089
1090

1091

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

1121

match. setdefault (key, value)
match

@staticmethod
to_rest (openflow):
of _match = openflow [REST MATCH]

mac_dontcare = mac. haddr_to_str (mac.DONTCARE)
ip-dontcare = “0.0.0.0~
ipv6_dontcare = ’

match = {}
key, value of _match.items () :
key == REST_-SRC.MAC key == REST_DST_MAC:

value == mac_dontcare:

key == REST_SRC_IP key == REST_DST._IP:
value == ip_dontcare:

key == REST_SRC_IPV6 key == REST_DST_IPV6:
value == ipv6_dontcare:

value ==

key Match . CONVERT:
conv Match . CONVERT[key]
conv dict ((value, key) key, value conv.items ())
match. setdefault (key, conv[value])

match. setdefault (key, value)
match

@staticmethod
to_mod_openflow (of_match):
mac_dontcare = mac. haddr_to_str (mac.DONTCARE)
ip-dontcare = 0.0.0.0°
ipv6_dontcare = ' ::’

match = {}
key, value of _match.items () :
key == REST_SRC_MAC key == REST_DST_MAC:

value == mac_dontcare:

key == REST_SRC_IP key == REST_DST.IP:
value == ip_dontcare:

key == REST_SRC_IPV6 key == REST_DST_IPV6:
value == ipv6_dontcare:

value == 0:

126

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

1135

1136

1137

1138
1139

1140

1141
1142

1143

1144
1145
1146
1147

1148

Action

match. setdefault (key, value)

match

(object):

@staticmethod

to_r

est (flow):

REST_ACTION flow :

act)

(O}

(H'H

(O}

actions = []
act flow [REST_ACTION | :
field_value = re.search(’SET_FIELD: \{ip_dscp:(\d+)’,

field_value:
actions .append ({REST_ACTION_.MARK: field_value.group

meter_value = re.search(’METER:(\d+)’, act)
meter_value :
actions .append ({REST_.ACTION_.METER: meter_value . group

queue_value = re.search(SET . QUEUE:(\d+)’, act)
queue_value:
actions .append ({REST_ACTION_QUEUE: queue_value.group

action = {REST_ACTION: actions}
action = {REST_ACTION: ’Unknown action type.’}
action

A.8 Topology qos TRAFFIC GEN.py

mininet. net Mininet
mininet . node Controller , RemoteController, OVSController
mininet . node CPULimitedHost, Host, Node
mininet . node OVSKernelSwitch, UserSwitch
mininet .node IVSSwitch
mininet. cli CLI
mininet.log setLoglevel , info
mininet. link TCLink, Intf
subprocess call

threading

subprocess

random

0s

time

datetime

json

Sys

127

gl import ditg

19

| from Controller_.commands import =

21

23| def myNetwork () :

24 max_rate_queue=100#Mbps

25 max_rate_queue=max_rate_queue 1000000

26 Default=str (max_rate_queue *20/100)#20%

27 Premium=str (max_rate_queue *80/100)#80%

28 Gold=str (max_rate_queue =100/100)#100%

29

30 change_values=6#change every number=5 minutes

31 Q0=False

32 #Stress Queue 1 (2,4,6,7)

33 Ql=False

34 #Stress Queue 2 (5)

35 Q2=False

36 #moltiplicator initialization

37 FO_max=2

38 F1_max=300

39 F2_max=300

40 FO=1

41 F1=1

) F2=1

43

44 net=Mininet(topo=None,

45 build=False ,

46 ipBase="10.0.0.0/8 ")

47

48 info(“#xxAdding controller\n’)

49 cO=net.addController (name="c0 ",

50 controller=RemoteController ,

51 ip="127.0.0.1",

52 protocol="tcp’,

53 port=6633)

54

55 info(“#xxAdding switches\n")

56 sl = net.addSwitch(’ sl ,dpid="0000000000000001" ,protocols="
OpenFlow13™)

57 s2 = mnet.addSwitch(’s2’,dpid="0000000000000002" ,protocols="
OpenFlow137)

58

59 info(’#%xAdding Host\n’)

60 hO = net.addHost(h0’, ip="10.10/24", mac="00:00:00:00:00:0a")

6l hl = net.addHost(hl’, ip="10.11/24", mac="00:00:00:00:00:0b")

6 h2 = net.addHost(h2’, ip="10.12/24", mac="00:00:00:00:00:0c ")

63 h3 = net.addHost(h3’, ip="10.13/24", mac="00:00:00:00:00:0d ")

64 h4 = net.addHost(h4’, ip="10.14/24", mac="00:00:00:00:00:0e ")

65 h5 = net.addHost(h5’, ip="10.15/24", mac="00:00:00:00:00:0f")

66

67 info(“#xxAdding Link\n’)

68 net.addLink (s1,s2,2,2)

69

128

70 net.addLink (s1, h0,3,0)
71 net.addLink(s1, hl1,4,0)

72 net.addLink(sl1, h2,5,0)

73 net.addLink (s2, h3,3,0)

74 net.addLink (s2, h4,4,0)

75 net.addLink (s2, h5,5,0)

76

77 info(“#xxStarting Network\n’)

78 net.build ()

79

80 info(’#xxStarting Controllers\n")

81 controller net.controllers:

82 controller.start ()

83

84 info(“#xxStarting Switches\n”)

85 net.get(sl).start([cO0])

86 net.get(’s2’).start([cO0])

87

88

89 #Activation of manager in listening on port 6632

9 os.popen(”sudo —S ovs—vsctl set—manager ptcp:66327, 'w’).write(”
Ao70pad5”)

91 time . sleep (2)

) NET = get_switchis ()

93 NET != "NO NET” NET!="[,]":

94 i=1

95 i<NET. find (7]7):

96 mom_NET=NET][i :]

97 datapath=NET[1i:i+mom NET. find (" ,”)]

98 i=i+momNET. find (7 ,”)+2

99 port_id = switch_ports_name (datapath)

100 k range (0,len(port_id)):
101 len(port_id [k]) <=2:

102 pp=port_id[k]

103 pp

104 ovssctl_set_bridge (port_id[k])
105 time . sleep (0.2)

106 i=1

107 i<NET. find (7]"7):

108 mom_NET=NET[i :]

109 datapath=NET[1i:i+mom NET. find (" ,”)]

0 i=i+momNET. find (7 ,”)+2
port_id = switch_ports_name (datapath)

1
12 ovsdb_addr(datapath)
13 IP_Flag=True
114 index range (0,len(port_id)):
115 port_id[index]=="sl—-eth2” port_id[index]=="s2-eth2
16 set_queue (datapath, port_id[index], str(

max_rate_queue), "{\”"max_rate\”: \""+Default+”\”}, {\"max_rate\”: \”
“+Premium+"\"}, {\"min_rate\”: \””+Gold+”\"}")
17 port = port_id[index][port_id[index]. find("h”)+1:]
118 port_id [index]=="sl—-eth2”:
19 IP_Destination="10.0.0.11"

129

120 port_id[index]=="s2—eth2”:

121 IP_Destination="10.0.0.13"

122 set_Telecom_queue (datapath , port, IP_Flag,
IP_Destination)

123 index range (0,len(port_id)):

124 port_id [index]=="sl—-eth4” port_id[index]=="s2-eth3

125 port = port_id[index][port_id[index]. find("h”)+1:]

126 port_id[index]=="sl—eth4”:

127 IP_Destination="10.0.0.13"

128 port_id [index]=="s2—-eth3":

129 IP_Destination="10.0.0.11"

130 set_Telecom_queue (datapath , port, IP_Flag,
IP_Destination)

131

132 # Import CSV data

133 "Csv Import’

134 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[0], skiprows
=[0]) # serv 0 tx

135 time_values = serv.values

136 serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[1], skiprows
=[0]) # serv 0 tx

137 serv_0_tx = serv.values

138 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[2], skiprows
=[0]) # serv 0 rx

139 serv_0_rx = serv.values

140 serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[3], skiprows
=[0]) # serv 1 tx

141 serv_1_tx = serv.values

142 serv = ditg.pd.read_csv(ditg.CSV, sep=":", usecols=[4], skiprows
=[0]) # serv 1 rx

143 serv_1_rx = serv.values

144 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[5], skiprows
=[0]) # serv 2 tx

145 serv_2_tx = serv.values

146 serv = ditg.pd.read_csv(ditg.CSV, sep=";’, usecols=[6], skiprows
=[0]) # serv 2 rx

147 serv_2_rx = serv.values

148 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[15], skiprows
=[0]) # serv 3 tx

149 serv_3_tx = serv.values

150 serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[16], skiprows
=[0]) # serv 3 rx

151 serv_3_rx = serv.values

152 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[11], skiprows
=[0]) # serv 4 tx

153 serv_4_tx = serv.values

154 serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[12], skiprows
=[0]) # serv 4 rx

155 serv_4_rx = serv.values

156 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[7], skiprows
=[0]) # serv 5 tx

157 serv_5_tx = serv.values

130

158

159

160

161

162

163

164

165

166

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204

206

serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[8], skiprows
=[0]) # serv 5 rx

serv_5_rx = serv.values

serv = ditg.pd.read_csv(ditg.CSV, sep=":;", usecols=[9], skiprows
=[0]) # serv 6 tx

serv_6_tx = serv.values

serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[10], skiprows
=[0]) # serv 6 rx

serv_6_rx = serv.values

serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[13], skiprows
=[0]) # serv 7 tx

serv_7_tx = serv.values

serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[14], skiprows
=[0]) # serv 7 rx

serv_7_rx = serv.values

i=20

j=0

pkts

n=1[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

pkts per second

avg = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

FO=F0_max

Fl=1

F2=1

s

"Wait for time alignment
wait=ditg . TIME/60
check_time=False

check_time==False:

now=datetime . datetime .now ()
time . sleep (0.1)
now . minute%wait==0:
check_time=True
len(str (now. minute))==1:
starting_time=str (now. hour)+’:0 +str (now. minute)

starting_time=str (now. hour)+’: +str (now. minute)
starting_time

k=0
index time_values:
index==starting_time:
i=k
k=k+1

"Starting Time: ’“+str(time_values[i])
j < ditg .SIM_N:
#calculate the moltiplicators

QO:
j%change _values==0:
FO==1:
FO=F0_max

FO=1

131

Ql:
j%change _values==0:
Fl==1:
F1=F1_max

Fl=1
Q2:
j%change _values==0:
F2==1:
F2=F2_max

F2=1

Server start
>Start ITGRecv’
hl.cmd(’ITGRecv &)
h3.cmd(' ITGRecv &)
time . sleep (2)
Sum of packets
sum_in = 0
sum_out = 0
Serv 0 tx
n[0] = int(serv_0O_tx[i])*F0 / ditg.SCALE + 1
avg[0] = n[0] / (ditg.TIME-10) + 1
avg[0] > O n[0] > O:
com = ditg.createCmd_2(dst=ditg.dst,port="10001",tos=ditg.
SERV_0, nPkts=str (n[0]) ,avg=str (avg[0]))
(com)
h1.cmd(com)
sum_in = sum_.in + n[0]

Serv 0 rx
n[0] = int(serv_O_rx[i])*F0 / ditg.SCALE + 1
avg[0] = n[0] / (ditg.TIME-10) + 1
avg[0] > O n[0] > O:
com = ditg.createCmd_2(dst=ditg.src,port="10001",tos=ditg.
SERV_0, nPkts=str (n[0]) ,avg=str (avg[0]))
(com)
h3.cmd(com)
sum_out = sum_out + n[0]

Serv 1 tx
n[l] = int(serv_1_tx[i])*F0 / ditg.SCALE + 1
avg[l] = n[1] / (ditg.TIME-10) + 1
avg[l] > O n[l] > 0O:
com = ditg.createCmd_2(dst=ditg.dst,port="10002",tos=ditg.
SERV_1,nPkts=str(n[1]) ,avg=str(avg[1l]))
(com)
hl.cmd(com)
sum_in = sum_in + n[1]

Serv 1 rx

132

259

260

261

284

288

289
290
291
292
293
294
295
296

297

298
299

300

n[l1] = int(serv_l_rx[i])*F0O / ditg.SCALE + 1
avg[1l] = n[1] / (ditg.TIME-10) + 1
avg[l] > O n[1] > O:
com = ditg.createCmd_2(dst=ditg.src,port="10002",tos=ditg.
SERV_1,nPkts=str(n[1]) ,avg=str(avg[1l]))
(com)
h3.cmd(com)
sum_out = sum_out + n[1]

Serv 2 tx
n[2] = int(serv_2_tx[i])*F1 / ditg.SCALE + 1
avg[2] = n[2] / (ditg.TIME-10) + 1
avg[2] > O n[2] > O:
com = ditg.createCmd_2(dst=ditg.dst,port="10003",tos=ditg.
SERV_2,nPkts=str(n[2]) ,avg=str (avg[2]))
(com)
hl.cmd(com)
sum_in = sum_in + n[2]

Serv 2 rx
n[2] = int(serv_2_rx[i])*F1 / ditg.SCALE + 1
avg[2] = n[2] / (ditg.TIME-10) + 1
avg[2] > O n[2] > O:
com = ditg.createCmd_2(dst=ditg.src,port="10003",tos=ditg.
SERV_2,nPkts=str(n[2]) ,avg=str (avg[2]))
(com)
h3.cmd(com)
sum_out = sum_out + n[2]

Serv 3 tx
n[3] = int(serv_3_tx[i])*F0 / ditg.SCALE + 1
avg[3] = n[3] / (ditg.TIME-10) + 1
avg([3] > 0 n[3] > O:
com = ditg.createCmd_2(dst=ditg.dst,port="10004",tos=ditg.
SERV_3,nPkts=str(n[3]) ,avg=str (avg[3]))
(com)
hl.cmd(com)
sum_in = sum_in + n[3]

Serv 3 rx
n[3] = int(serv_3_rx[i])*F0 / ditg.SCALE + 1
avg[3] = n[3] / (ditg.TIME-10) + 1
avg([3] > O n[3] > O:
com = ditg.createCmd_2(dst=ditg.src,port="10004",tos=ditg.
SERV_3,nPkts=str(n[3]) ,avg=str (avg[3]))
(com)
h3.cmd(com)
sum_out = sum_out + n[3]

Serv 4 tx
n[4] = int(serv_4_tx[i])*F1 / ditg.SCALE + 1
avg[4] = n[4] / (ditg .TIME-10) + 1

avg[4] > O n[4] > O:

133

306

307

com = ditg.createCmd_2(dst=ditg.dst,port="10005",tos=ditg.
SERV_ 4, nPkts=str(n[4]) ,avg=str (avg[4]))
(com)
hl.cmd(com)
sum_in = sum.in + n[4]

Serv 4 rx
n[4] = int(serv_4_rx[i])*F1 / ditg.SCALE + 1
avg[4] = n[4] / (ditg .TIME-10) + 1
avg[4] > O n[4] > 0:
com = ditg.createCmd_2(dst=ditg.src,port="10005",tos=ditg.
SERV_ 4, nPkts=str(n[4]) ,avg=str (avg[4]))
(com)
h3.cmd(com)
sum_out = sum_out + n[4]

Serv 5 tx
n[5] = int(serv_5_tx[i])*F2 / ditg.SCALE + 1
avg[5] = n[5] / (ditg .TIME-10) + 1
avg[5] > O n[5] > 0O:
com = ditg.createCmd_2(dst=ditg.dst,port="10006",tos=ditg.
SERV.5, nPkts=str(n[5]) ,avg=str (avg[5]))
(com)
h1l.cmd(com)
sum_in = sum_in + n[5]

Serv 5 rx
n[5] = int(serv_5_rx[i])*F2 / ditg.SCALE + 1
avg[5] = n[5] / (ditg.TIME-10) + 1
avg[5] > O n[5] > O:
com = ditg.createCmd_2(dst=ditg.src,port="10006",tos=ditg.
SERV.5, nPkts=str(n[5]) ,avg=str (avg[5]))
(com)
h3.cmd(com)
sum_out = sum_out + n[5]

Serv 6 tx
n[6] = int(serv_6_tx[i])*F1 / ditg.SCALE + 1
avg[6] = n[6] / (ditg .TIME-10) + 1
avg[6] > O n[6] > O:
com = ditg.createCmd_2(dst=ditg.dst,port="10007",tos=ditg.
SERV_6, nPkts=str (n[6]) ,avg=str (avg[6]))
(com)
h1l.cmd(com)
sum_in = sum_in + n[6]

Serv 6 rx
n[6] = int(serv_6_rx[i])*F1 / ditg.SCALE + 1
avg[6] = n[6] / (ditg . TIME-10) + 1
avg[6] > O n[6] > O:
com = ditg.createCmd_2(dst=ditg.src,port="10007",tos=ditg.
SERV_6, nPkts=str (n[6]) ,avg=str (avg[6]))
(com)
h3.cmd(com)

134

365

366

368
369

370

380

390
391

392

394
395
396
397
398
399

400

sum_out = sum_out + n[6]

Serv 7 tx
n[7] = int(serv_7_tx[i])*F1 / ditg.SCALE + 1
avg[7] = n[7] / (ditg . TIME-10) + 1
avg[7] > O n[7] > O0:
com = ditg.createCmd_2(dst=ditg.dst,port="10008",tos=ditg.
SERV_7,nPkts=str(n[7]) ,avg=str (avg[7]))
(com)
hl.cmd(com)
sum_in = sum_in + n[7]

Serv 7 rx
n[7] = int(serv_7_rx[i])*F1 / ditg.SCALE + 1
avg[7] = n[7] / (ditg.TIME-10) + 1
avg[7] > 0 n[7] > O:
com = ditg.createCmd_2(dst=ditg.src,port="10008",tos=ditg.
SERV_7,nPkts=str(n[7]) ,avg=str (avg[7]))

(com)
h3.cmd(com)
sum_out = sum_out + n[7]
j = j+1
i=i+1
i % ditg.SIZE==0 i!=0:
i=0
i

(’Sum of Packets IN: * + str(sum.in))
(’Sum of Packets OUT: ~ + str(sum_out))

time . sleep (61)
check_time=False
check_time==False:
now=datetime . datetime .now ()
now . minute%wait==0:
check_time=True
"Time: "+str (now)
"Database Time: ’“+str(time_values[i])

time . sleep (1)
hl.cmd(’ kill %ITGSend)
hl.cmd(kill %ITGRecv’)

CLI(net)

net.stop ()
__name__=="__main__":
setLoglevel (“info’)
myNetwork ()

135

A.9 ditg.py

#!/usr/bin/python
import pandas as pd
import time

)

s|# Constants

o/ # Value of Interval Time in second

7| TIME = 300

sl TIMEIMS = TIME = 1000

ol# Scale factor for the packet rate. It will be equal to [pkts / scale]
per second.

10| SCALE = 400

in|# CSV Entries

2| SIZE = 576

3|# Simulation Time in CSV hours

14| SIM = 720

is|# Simulation in number of intevals

16| SIMLN = SIM = 12

17| computername="jedi”

is|# CSV File

19|CSV = */home/ +computername+ /Scrivania/RyuDatapathMonitor—master /CSV/
vlan_interfaccial _-DOS .csv’

20| # ToS

21| SERV_0 70”7

»|SERV_.l = 7327

3l SERV2 = 772”7
4/ SERV.3 = 796~
5| SERV 4 = 71367
26| SERV.S = 71607
27| SERV_6 = 71927
| SERV.7T = 7224”7
29
IDT_OPT
si|# constant
»|c_idt = "-C”
33| #poisson

#| p-idt = 7-07
;s|#esponential
6| e_idt ="-E”

| # PS_OPT
9| # constant

wlc_ps = "—c”
poisson
©lp-ps = "-07
4| # esponential

2 29

wu|e_ps ="—e

IS

4| # default value for protocol and packet size
+7| DEFAULT_P = “UDP”
13| DEFAULTPS = 75127

136

sol # Host Ip
siisrc = 710.0.0.117
so0dst = 710.0.0.137

s« # Type of distribution
ss| choice_i c_idt
ss| choice_s c_ps

sol# Cmd creation

60 createCmd (src, dst, tos, nPkts, avg, protocol=DEFAULTP, ps_dim=
DEFAULT_PS) :

61 com = 'ITGManager ~ + src + >~ —a ~ + dst + ° —-b ’ + tos +
choice_i + ° ~ + str(avg) + + choice_s +
str (TIME.MS-8000)

62 com

s

+
T4+ ps.dim + = -t 7 +

’ s s

4|# Cmd creation

65 createCmd_2 (dst, port, tos, nPkts, avg, protocol=DEFAULTP, ps_dim=
DEFAULT_PS) :

66 com = 'ITGSend —-a ~ + dst + ° —-rp ’ + str(port) + >~ -b ~ + tos +
+ choice_i + ° ° + str(avg) + + choice_s + T+ ps_dim + ° -t
"+ str (TIMEMS-10000) + ~ &

67 com

s)

s s)

w|/# Cmd creation Iperf

70 createCmd_3 (dst, port, tos, nPkts, avg, protocol=DEFAULT P, ps_dim=
DEFAULT_PS) :

7 com = “iperf3 -c * + dst + ° -p ~ + str(port) + > -S 7 + tos + = +
-k 7 + str(nPkts) + = &

7 com

137

138

Appendix B

Python Codes For Dedicated Hardware
Network Devices

B.1 Traffic_ Real Hwd.py

subprocess call
threading
subprocess
random
0s
time
datetime
json
sys
ditg
psutil
SDL_DS1307

f1():

IP_.SRC="169.254.207.222"

IP.DST = 7169.254.181.98”

os.system('sudo ifconfig ethO *+IP_.SRC+’ netmask 255.255.0.0")
ds1307 = SDL_DS1307.SDL_DS1307(1, 0x68)

time . sleep (2)

now=ds1307 .read_datetime ()

str_time="""+str (now.year)+ — +str (now.month)+ - +str (now.day)+’
str (now. hour)+’: +str (now. minute)+ : +str (now.second)+" "’
os.system('sudo date ——set '+str_time)

(’Csv Import’)
serv = ditg.pd.read_csv(ditg .CSV, sep=":;", usecols=[0], skiprows
=[0]) # serv 0 tx
time_values = serv.values
serv = ditg.pd.read_csv (ditg .CSV, sep=":", usecols=[1], skiprows
=[0]) # serv 0 tx
serv_0_tx = serv.values

139

cy) serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[2], skiprows
=[0]) # serv 0 rx

3 serv_0_rx = serv.values

34 serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[3], skiprows
=[0]) # serv 1 tx

35 serv_1_tx = serv.values

36 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[4], skiprows
=[0]) # serv 1 rx

37 serv_1_rx = serv.values

38 serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[5], skiprows
=[0]) # serv 2 tx

39 serv_2_tx = serv.values

40 serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[6], skiprows
=[0]) # serv 2 rx

41 serv_2_rx = serv.values

I serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[15], skiprows
=[0]) # serv 3 tx

43 serv_3_tx = serv.values

44 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[16], skiprows
=[0]) # serv 3 rx

45 serv_3_rx = serv.values

46 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[11], skiprows
=[0]) # serv 4 tx

47 serv_4_tx = serv.values

48 serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[12], skiprows
=[0]) # serv 4 rx

49 serv_4_rx = serv.values

50 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[7], skiprows
=[0]) # serv 5 tx
serv_5_tx = serv.values
serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[8], skiprows
=[0]) # serv 5 rx

53 serv_5_rx = serv.values

54 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[9], skiprows
=[0]) # serv 6 tx

55 serv_6_tx = serv.values

56 serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[10], skiprows
=[0]) # serv 6 rx

57 serv_6_rx = serv.values

58 serv = ditg.pd.read_csv(ditg .CSV, sep=";", usecols=[13], skiprows
=[0]) # serv 7 tx

59 serv_7_tx = serv.values

60 serv = ditg.pd.read_csv(ditg.CSV, sep=";", usecols=[14], skiprows
=[0]) # serv 7 rx

61 serv_7_rx = serv.values

62

63 i =20

64 j =0

65 ### pkts

66 n=1[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

67 # pkts per second

68 avg = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

69 FO_max=2

70 FO=F0_max

140

87

88

89

90

91

92

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

124

Fl=1
F2=1
(’Wait for time alignment’)
wait=ditg .TIME/60
check_time=False
check_time==False:
now=datetime . datetime .now ()
time.sleep (0.1)

now . minute%wait==0:
check_time=True
len(str (now. minute))==1:
starting _time=str (now. hour)+’ :0 +str (now. minute)

starting_time=str (now.hour)+’: +str (now. minute)
(starting_time)

k=0
index time_values:
index==starting_time :
i=k
k=k+1

time . sleep (0.5)
time . sleep (0.1)
(*Starting Time: ’“+str(time_values[i]))
j < ditg.SIM_N:
now=datetime . datetime .now ()
len(str (now. minute))==1:
starting_time=str (now. hour)+’ :0 +str (now. minute)

starting_time=str (now. hour)+’: +str (now. minute)

starting _time==time_values[1]:
(starting_time)

k=0

index time_values:
index==starting_time :
i=k
k=k+1

time . sleep (0.1)
time . sleep (4)
Sum of packets

sum_in = 0
sum_out = 0
Serv 0 rx

n[0] = int(serv_O_rx[i])*FO0 / ditg.SCALE + 1

141

125 avg[0] = n[0] / (ditg.TIME-10) + 1

126 avg[0] > O n[0] > O:

127 com = ditg.createCmd_2(dst=IP_DST, port="10001",tos=ditg .
SERV_0, nPkts=str (n[0]) ,avg=str (avg[0]))

128 (com)

129 0s . popen (com)

130 sum_out = sum_out + n[0]

131

132 # Serv 1 rx

133 n[l] = int(serv_1l_rx[i])*F0 / ditg.SCALE + 1

134 avg[l] = n[l] / (ditg.TIME-10) + 1

135 avg[l] > O n[l] > O:

136 com = ditg.createCmd_2(dst=IP_DST, port="10002",tos=ditg.
SERV_1,nPkts=str(n[1]) ,avg=str(avg[1l]))

137 (com)

138 0s . popen (com)

139 sum_out = sum_out + n[1]

140

141 # Serv 2 rx

142 n[2] = int(serv_2_rx[i])*F1 / ditg.SCALE + 1

143 avg[2] = n[2] / (ditg.TIME-10) + 1

144 avg[2] > O n[2] > O:

145 com = ditg.createCmd_2(dst=IP_DST, port="10003",tos=ditg.
SERV_2,nPkts=str(n[2]) ,avg=str (avg[2]))

146 (com)

147 0s . popen (com)

148 sum_out = sum_out + n[2]

149

150 # Serv 3 rx

151 n[3] = int(serv_3_rx[i])*F0 / ditg.SCALE + 1

152 avg([3] = n[3] / (ditg.TIME-10) + 1

153 avg([3] > 0 n[3] > O:

154 com = ditg.createCmd_2(dst=IP_.DST, port="10004",tos=ditg .
SERV_3,nPkts=str(n[3]) ,avg=str (avg[3]))

155 (com)

156 0s . popen (com)

157 sum_out = sum_out + n[3]

158

159 # Serv 4 rx

160 n[4] = int(serv_4_rx[i])*F1 / ditg.SCALE + 1

61 avg[4] = n[4] / (ditg .TIME-10) + 1

162 avg[4] > O n[4] > 0O:

163 com = ditg.createCmd_2(dst=IP_.DST, port="10005",tos=ditg .
SERV 4 , nPkts=str(n[4]) ,avg=str (avg[4]))

164 (com)

165 0s . popen (com)

166 sum_out = sum_out + n[4]

167

168 # Serv 5 rx

169 n[5] = int(serv_5_rx[i])*F2 / ditg.SCALE + 1

170 avg[5] = n[5] / (ditg.TIME-10) + 1

171 avg[5] > O n[5] > O:

172 com = ditg.createCmd_2(dst=IP_.DST, port="10006",tos=ditg .
SERV.5, nPkts=str(n[5]) ,avg=str (avg[5]))

142

173
174

175

176

178

179

180

181

(com)
0s . popen (com)
sum_out = sum_out + n[5]

Serv 6 rx
n[6] = int(serv_6_rx[i])*F1 / ditg.SCALE + 1
avg[6] = n[6] / (ditg .TIME-10) + 1
avg[6] > O n[6] > O0:
com = ditg.createCmd_2(dst=IP_DST, port="10007",tos=ditg .
SERV_6, nPkts=str (n[6]) ,avg=str (avg[6]))
(com)
os . popen (com)
sum_out = sum_out + n[6]

Serv 7 rx
n[7] = int(serv_7_rx[i])*F1 / ditg.SCALE + 1
avg[7] = n[7] / (ditg . TIME-10) + 1
avg[7] > O n[7] > O0:
com = ditg.createCmd_2(dst=IP_DST, port="10008",tos=ditg .
SERV_7,nPkts=str(n[7]) ,avg=str (avg[7]))

(com)
0s . popen (com)
sum_out = sum_out + n[7]
jo=j+l
i=i+1
i % ditg.SIZE==0 i!=0:
i=0
(1)
(’Sum of Packets OUT: ~ + str(sum_out))

##Wait next minute to avoid another detection
check_time=False
check_time==False:
now=datetime . datetime .now ()

(now. minute== now . minute==17 now . minute==31
now . minute==41 now . minute ==54) now.second==0:

now=ds1307 .read_datetime ()

str_time="""+str (now.year)+ - +str (now.month)+ - "+
str (now.day)+’ ’‘+str(now.hour)+ : +str (now.minute)+ : +str (now.
second)+’ 7"

os.system('sudo date ——set ‘+str_time)

now=datetime . datetime .now ()

now. minute%wait==1:

check_time=True

time . sleep (1)
time . sleep (0.1)
check_time=False

check_time==False:
now=datetime . datetime .now ()

143

222

223

224

225

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

266

try :

if (now.minute== or

now . minute==17
and now.second==0:

or now.minute==31

+str (now.year)+ — +str (now.month)+ - "+

‘+str_time)

"+str(time_values[i]))

shell=True).decode (" utf -8

shell=True).decode (" utf -8

or now.minute==41 or now.minute==54)
now=ds1307 .read_datetime ()
str_time="""
str (now.day)+’ ’“+str(now.hour)+ : +str (now.minute)+’ : +str (now.
second)+" "’
os.system(sudo date ——set
now=datetime . datetime .now ()
if now.minute%wait==0:
check_time=True
print ("Time: “+str (now))
print (’Database Time:
else:
time . sleep (1)
except:
time.sleep (0.1)
try
cmd = "pidof ITGRecv”
PID = subprocess.check_output(cmd,
)
print ("pidof ITGRecv: "+str (PID))
os.popen(’sudo kill =9 "+str (PID))
cmd = “pidof ITGSend”
PID = subprocess.check_output(cmd,
)
print ("pidof ITGSend: "+str (PID))
os.popen(’sudo kill =9 "+str (PID))
except:
time . sleep (0.1)
def f2():
while True:
try :
print(”Start ITGRecv”)
os.popen(ITGRecv)
except:
time . sleep (1)
tl = threading.Thread(target=fl, args=())
t2 = threading.Thread(target=f2, args=())
#Started the threads
tl.start ()
time . sleep (4)
t2.start ()
#Joined the threads
tl.join ()
t2.join ()

144

B.2 Start ITGRecv.py

from subprocess import call
import threading

sl import subprocess

s|import random

import os

import time

import datetime

import json

Import sys

nfimport ditg

W

© ® 9 o

13l while True:

14 try :

15 print(”Start ITGRecv”)
16 os.popen(ITGRecv ")

17 except:

18 time . sleep (1)

B.3 ditg.py

)

#!/usr/bin/python

A~ W

import pandas as pd
import time

w

Constants

Value of Interval Time in second

TIME = 300

10| TIMEZMS = TIME = 1000

in|# Scale factor for the packet rate. It will be equal to [pkts / scale]
per second.

2| SCALE = 400

3|# CSV Entries

o =

4| SIZE = 576
i5/# Simulation Time in CSV hours
16| SIM = 720

7|# Simulation in number of intevals

8| SIMLN = SIM % 12

9| computername="pi"

w|# CSV File

21|{CSV = " /home/ +computername+ /Desktop/Hardware _Interface /CSV/
vlan_interfaccial _DOS .csv’

»|# ToS

x| SERV.0 = 70"

2| SERV_1 = 7327
5| SERV.2 = 7727
26| SERV_.3 = 7967
27| SERV 4 = 71367

28| SERV.S = 71607

145

2| SERV_6 7192”7
5 SERV.7 = 7224”7

»|# IDT_.OPT

33| # constant
ulc_idt = 7-C”
;| #poisson

| poidt = 7-0”
s7|#esponential
| e_idt ="-E”

w|# PS_OPT

4| # constant

wlec_ps = 7-c¢”

43| # poisson

“4lp-ps = 7-07

ss|# esponential

wle_ps ="—e”

#|# default value for protocol and packet size
1| DEFAULT_P = “UDP”

DEFAULTPS = 7512”7

&

s2|# Host Ip
ssidst = 7169.254.207.100”

ss|# Type of distribution
so] choice_i c_idt
s71 choice_s = c_ps

58

o|# Cmd creation
61| def createCmd (src, dst, tos, nPkts, avg, protocol=DEFAULTP, ps_dim=

DEFAULT_PS) :
62 com = 'ITGManager ~ + src + ~ —-a ~ + dst + ~ -b ~ + tos + ~ ~ +
choice_i + ° * + str(avg) + ° ° + choice_s + °’ + ps.dim + = -t ~ +

str (TIME_.MS-8000)
63 return com

os|# Cmd creation

e| def createCmd_2 (dst, port, tos, nPkts, avg, protocol=DEFAULT P, ps_dim=
DEFAULT_PS) :

67 com = 'ITGSend —-a °~ + dst + ~ —-rp ~ + str(port) + ~ -b ~ + tos + °~ ~
+ choice_i + ~ + str(avg) + + choice_s + + ps_-dim + ° -t

"+ str (TIMEMS-10000)+ = &’

68 return com

s s b}

69
70|# Cmd creation Iperf
71| def createCmd_3 (dst, port, tos, nPkts, avg, protocol=DEFAULT P, ps_dim=

DEFAULT_PS) :

72 com = ‘iperf3 —-c¢ 7 + dst + ° —p * + str(port) + ~ -S ' + tos + = +
-k 7 + str(nPkts) + = &

73 return com

146

)

=

47

48

49

B.4 Set_Queue.py

subprocess call
threading
subprocess
random
0s
time
datetime
json
Sys
ditg

Controller_.commands *

max_rate_queue=100#Mbps
max._rate_queue=max_rate_queue *1000000
Default=str (max_rate_queue *20/100)#20%
Premium=str (max_rate_queue *80/100)#80%
Gold=str (max_rate_queue =100/100)#100%

set_queue_eth2 ():
NET = get_switchis ()
NET != "NO NET” NET!="[,]":
i=1
i<NET. find (7]7):
mom_NET=NET][i :]
datapath=NET[1i:i+mom NET. find (" ,”)]
i=i+mom NET. find (7,)+2
port_id = switch_ports_name (datapath)
time . sleep (0.2)
i=1
i<NET. find (7]7):
mom_NET=NET][i :]
datapath=NET[i:i+mom NET. find (" ,”)]
i=i+momNET. find (7 ,”)+2
port_id = switch_ports_name (datapath)
ovsdb_addr (datapath)

(port_id)
IP_Flag=True
index range (0,len(port_id)):
port_id [index]=="eth2” port_id [index]=="ethl "
"Port_ID: "+port_id[index]
port = port_id[index][port_id[index]. find ("h”)+1:]
port_id[index]=="eth2”:
set_queue (datapath, port_id[index], str(
max_rate_queue), “{\"max_rate\”: \"7+Default+”\"}, {\"max_rate\”: \”
“+Premium+7\"}, {\"min_rate\”: \””+Gold+"\"}")
IP_Destination="169.254.181.98"
set_Telecom_queue (datapath , port, IP_Flag,
IP_Destination)

147

sof try :

51 os.popen(”sudo =S curl —X DELETE http ://localhost:8080/qos/queue
/0000000000000002”, *w’).write (”Ao70pad45”)

52 print ”\n”

53 set_queue_eth2 ()

s4f except:

55 print “ERROR”

B.5 SendTime.py

o|#!/usr/bin/python

sl import serial

4fimport time

slimport datetime

6l import os

.

sl os.popen(’sudo chmod a+rw /dev/ttyACMO”, 'w’).write(”Ao70pad5™)
9

10

| def read_all(port, chunk_size=200):

12 ?””Read all characters on the serial port and return them.”””
13 if not port.timeout:

14 raise TypeError(’ Port needs to have a timeout set!’)
15

16 read_buffer = b’

17

18 while True:

19 # Read in chunks. Each chunk will wait as long as specified by
20 # timeout. Increase chunk_size to fail quicker

21 byte_chunk = port.read(size=chunk_size)

2 read_buffer += byte_chunk

23 if not len(byte_chunk) == chunk_size:

24 break

2 return read_buffer

28| #°COM3”’

vl ser = serial.Serial(

30 port = */dev/ttyACMO’,

31 baudrate = 115200,

32 parity = serial .PARITY_NONE,

33 stopbits = serial .STOPBITS_ONE,

34 bytesize = serial .EIGHTBITS,

35 timeout=0.5, # IMPORTANT, can be lower or higher

36 inter_byte_timeout=0.1 # Alternative

37)

s/ time . sleep (5)

ol flag = 0;

2| first_loop =0;

11| bufsize =0;

©| while True:

148

43 ts = datetime . datetime .now () ;

44

45 sec_mom=ts . second ;

46 minute_mom=ts . minute ;

47 hour_.mom=ts . hour;

48 DAY.mom=ts . day;

49 MONTH.mom=ts . month ;

50 YEAR=str (ts.year);

51

52 sec_mom < 10:

53 sec="0"+str(ts.second);

54 .

55 sec=str (ts.second);

56 minute_mom <10:

57 minute="0"+str (ts.minute) ;

58 .

59 minute=str (ts.minute) ;

60 hour_mom < 10:

6l hour="0"+str (ts.hour);

62 :

63 hour=str (ts.hour);

64 DAY _mom< 10:

65 DAY="0"+str (ts.day);

66 .

67 DAY=str (ts .day);

68 MONTH-mom<10:

69 MONTH="0"+str (ts . month) ;

70 .

71 MONTH=str (ts . month) ;

73 DATA=YEAR+’ ’*+MONIH+ ' ’+DAY+’ ’+hour+’ ’‘+minute+’ ’+sec;

74

75 minute_mom%13==0 sec_mom==0:

76 flag =0;

77 flag==0:

78 first_loop==0:

79 (’Time aligned at:”)

80 (DATA)

81 first_loop=lI

82

83 ser.write (DATA.encode ()) #Send data to arduino. Activate
arduino read pin and write to serial

84 time . sleep (2)

85 byteData = read_all(ser)

86 byteData.decode (7 utf -8")=="1":

87 flag=1;

88 .

89 (”’ERROR———>resend data’)

90 flag=0;

91 time . sleep (1)

92 .

93 time . sleep (0.2)

149

B.6 ReadTime.ino

#include <Wire.h>
#include <TimelLib.h>
#include <DS1307RTC.h>

const char xmonthName[l2] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
||Jul", "Aug", "Sep"’ "OCt", "NOV", "DeC"
91'};

Il|tmElements_t tm;

13|char inByte=0;
14|int lenbuffer=19;
15|byte bufferDATA[19];

17/String myString;
18| String Hour;

19| String Min;

20| String Sec;

21| String Day;

22| String Month;

23| String Year;

24

25 void setup () {

26 Serial.begin(115200);

27 pinMode (LED_BUILTIN, OUTPUT);

28 digitalWrite (LED_BUILTIN, LOW);

29 while (!Serial) {

30 ; // wait for serial port to connect. Needed for
native USB

31 }

32 }

33

34 void loop () {

35

36 String DATA;

37 if (Serial.available() > 0) //Waiting for request

38 {

39 Serial.readBytes (bufferDATA, lenbuffer);

40 myString = String((char =*)bufferDATA);

41 Hour=myString.substring (11, 13);

42 Min=myString.substring (14, 16);

150

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Sec=myString.substring (17, 19);
Day=myString.substring (8, 10);
Month=myString.substring (5, 7);
Year=myString.substring (0, 4);

tm.
tm.
tm.
tm.
tm.
tm.

Hour = Hour.tolInt ();
Minute = Min.tolInt ();
Second = Sec.tolnt ()
Day = Day.tolInt ();
Month = Month.tolInt ();

Year = CalendarYrToTm(Year.toInt ());

14

RTC.write (tm) ;
Serial.print ("1");
delay (1000);

151

	Abstract
	Introduction
	Related Works
	Background Knowledge
	Software Defined Networks Architecture
	Data Plane
	Control Plane
	Application Plane

	Overview Of Machine Learning Algorithms
	Supervised Learning
	Unsupervised Learning
	Semi-Supervised Learning
	Reinforcement Learning

	RT- and RF-based models of SDN switched for Priority Queueing
	Mininet network emulation environment and control problem
	Regression Trees and Random Forest based models for MPC
	RT and RF background
	Switching ARX (SARX) model identification via RT
	SARX model identification via RF
	MPC problem formulation.
	Disturbance forecast

	Simulation results
	Disturbance predictive model validation
	Queues predictive model validation
	Control performance

	RT- and RF-based predictive models of multi-service traffic in a real Service Provider Network
	Control performance validation over dedicated hardware network
	Traffic predictive model validation on Italian Internet provider network

	Conclusions
	References
	Publications
	Python Codes for Mininet Environment
	main_controller_TOS.py
	datapath_monitor_TOS.py
	Controller_commands.py
	qos_simple_switch_13.py
	ofctl_rest.py
	rest_conf_switch.py
	rest_qos.py
	Topology_qos_TRAFFIC_GEN.py
	ditg.py

	Python Codes For Dedicated Hardware Network Devices
	Traffic_Real_Hwd.py
	Start_ITGRecv.py
	ditg.py
	Set_Queue.py
	SendTime.py
	ReadTime.ino

