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Abstract

The fundamental features of the Standard Model of Particle Physics are revised. De-

spite a great success through various precision tests, it does not have all the answers. A lot

of unsatisfactory and unexplained stuff ask for physics Beyond the Standard Model (BSM).

I will address some of these fundamental problems, such as the mass hierarchy problem,

the weak mixing pattern and the strong CP problem in a way I define natural. Related

to this concept, I will discuss an important (and underrated) class of symmetries, called

emergent symmetries, where we will see supersymmetry is one of the major examples in a

lot of context.
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Introduction

The Standard Model of Particle Physics represents our best knowledge about the strong

and electroweak interactions. Although the various precision tests successfully agree with

its predictions, it is known as well that it cannot be the final theory; indeed, a lot of

mysteries, puzzles and unsatisfactory features are present therein. As canonical examples

we could mention gravity, which is not included in the SM context, but also Dark Matter

and Dark Energy. Outside from the astrophysical context we can mention the fermion

mass hierarchy problem, the weak mixing angles pattern, the strong CP problem and the

puzzle of replication of families; all these concepts will be developed in this work. In the

literature these issues are usually addressed by introducing a lot of stuff like anomalous

global symmetries or some heavy spectator fields; the aim of part of this work is to address

these problems by relaxing almost all of these ad hoc assumptions, by relying on the more

fundamental gauge structure of the theory.

Stability of Higgs mass against radiative corrections lead to the idea of Supersymmetry,

which in its minimal realization introduces a fermionic (bosonic) partner for each known

boson (fermion); among its implications, we cite the possibility of Grand Unification, that

is, the idea that at some very high energy scale the three gauge couplings converge to the

same value when we consider their running under the Renormalization Group Equations.

We will stress that Supersymmetry and Grand Unification are deeply connected.

This work is organized as follows. After a brief review of the ideas behind and beyond the

Standard Model in Chapter 1, I will discuss some interesting results about the coherence of

the Grand Unification concept in Chapter 2, where also a detailed analysis of the thresholds

effects is included, as well as an application to the fermion masses. Chapter 3 is dedicated
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to the idea of emergent symmetry arising from a Renormalization Group evolution; this

concept could be used to have an alternative point of view about global internal symmetries

(which are not really fundamental), but also Supersymmetry and gauge symmetries. In the

last Chapter I address the so called family problem, as well as the Strong CP problem by

the introduction of an extra abelian local symmetry, whose spontaneous breaking pattern

at some high energy scale will provide generation dependent Yukawa couplings which could

explain the observed fermion mass hierarchy and weak mixing angles.
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Chapter 1
Behind and Beyond the Standard Model

In this chapter we briefly recall the basic ingredients needed to the construction of

the Standard Model (SM) of particle physics [1, 2, 3], as well as its successes and its

unsatisfactory features which demand for new physics.

1.1 Standard Model review

The role of symmetries in particle physics is crucial: they provide the classification of

particles, dictate conservation laws in their interactions and are instrumental in solving

dynamical problems. As far as we know, the only really fundamental symmetries are

gauge symmetries, that are just a manifestation of a field definition redundancy in the

theory; they must be anomaly free, and cannot be explicitly broken. On the contrary,

global symmetries are not protected by any fundamental principle, so their origin is a

mystery; indeed, they could arise as accidental symmetries (like lepton and baryon number

or isospin symmetry in the Standard Model), but at some point they will be broken by

e.g. non perturbative gravitational effects [4, 5, 6, 7, 8], due to the presence of Planck

suppressed higher order operators which only respect gauge symmetries.

So, the basic principle which guides the construction of the all interactions (including

gravity) is the local gauge invariance. The Standard Model, which is the theory of strong

and electroweak interactions, is based on the local gauge group SU(3) × SU(2) × U(1),

where SU(3) is the colour symmetry group acting on quarks and gluons, SU(2) is the

chiral gauge group of the weak interaction, while U(1) is the so called hypercharge group.
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All the fermion fields are Weyl spinors which fit in the following representations of the

Standard Model group1

qL =

(
u

d

)
L

∼
(
3, 2,

1

6

)
ℓL =

(
ν

e

)
L

∼
(
1, 2,−1

2

)
(1.1)

uR ∼
(
3, 1,

2

3

)
dR ∼

(
3, 1,−1

3

)
eR ∼ (1, 1,−1) (1.2)

In principle, together with these we can include also the right handed neutrino νR ∼

(1, 1, 0), which is a gauge singlet; its relevance will be discussed later on. The above

quantum numbers are the same for all the 3 known fermion families.

The Standard Model Lagrangian can be decomposed in the following sectors:

LSM = Lgauge + Lmatter + LHiggs + LY uk (1.3)

Here

Lgauge = −1

2
trGµν Gµν −

1

2
trWµνW

µν − 1

4
Bµν B

µν (1.4)

is the kinetic term for the gauge bosons. Gµν = Gaµν T
a is the field strength for SU(3), with

generators T a = λa/2, a = 1, . . . , 8; Wµν = W a
µν T

a is the field strength for SU(2), with

generators T a = σa/2, a = 1, . . . , 3, while Bµν is the abelian field strength. In general, if

we call Aµ = Aaµ T
a the Lie-valued gauge field, the corresponding field strength is defined

as

Fµν = ∂µAν − ∂ν Aµ + i g [Aµ, Aν ] (1.5)

where g is the gauge coupling constant. In this discussion we take the group generators in

fundamental representation canonically normalized as

tr (T a T b) =
1

2
δab (1.6)

Next, we have the matter sector, including the kinetic term of the fermions, as well as their

interactions with the gauge bosons

Lmatter = i q̄iL /D qiL + i ūiR /D uiR + i d̄iR /D diR + i ℓ̄iL /D ℓiL + i ēiR /D eiR (1.7)

Here, the indices i = 1, 2, 3 are family indices, and D denotes the covariant derivative

Dµ = ∂µ + i g3Gµ + i g2Wµ + i g′
Y

2
Bµ (1.8)

1The U(1) quantum number is defined by the relation Q = I3 +Y/2, where Q is the electric charge and

I3 is the third component of the weak isospin.
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where g3, Gµ and g2, Wµ are the gauge coupling constants and gauge fields of SU(3) and

SU(2), respectively, while Y is the eigenvalue of the hypercharge. Of course, this operator

has to be understood in the corresponding representation when acting on the fields; e.g.

Dµ ℓL will have no contribution from Gµ, being a colour singlet, and so on.

The Higgs sector

LHiggs = |DµH|2 − V (H) (1.9)

is responsible for the electroweak symmetry breaking; indeed, once the Higgs field H ∼(
1, 2, 12

)
acquires a vacuum expectation value (VEV) ⟨H⟩ = v/

√
2 = 174 GeV, we get the

symmetry breaking pattern

SU(2)L × U(1)Y → U(1)EM (1.10)

leaving as the only unbroken generator the one of electromagnetic interaction; as a result,

the gauge boson of U(1)EM remains massless; we identify it as the photon, which will be

a linear combination of the hypercharge gauge boson and the neutral one of SU(2):

Aµ = cos θW Bµ + sin θW W 3
µ (1.11)

while the orthogonal linear combination

Zµ = − sin θW Bµ + cos θW W 3
µ (1.12)

together with the other 2 charged SU(2) gauge bosons W± acquires a mass due to the

Higgs mechanism

M2
W = g22 v

2 M2
Z =

g22 v
2

cos2 θW
(1.13)

where the rotation angle θW is known as the Weinberg angle, defined through the ratio of

the coupling constants of the electroweak group as

tan θW =
g′

g2
(exp. sin2 θW ≃ 0.23117 at EW scale) (1.14)

The Higgs potential can be written as

V (H) = −µ
2

2
H†H +

λ

4
(H†H)2 (1.15)

by minimizing this potential we get an expression for the Higgs vev

⟨H⟩ =
√

2µ2

λ
(1.16)
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If one parametrizes the Higgs doublet as

H =

(
H+

H0

)
=

1√
2

(
0

v + h(x)

)
(1.17)

we get a physical Higgs mass mh = µ =
√
λ/2 v.

Finally, the Yukawa sector, which provides the fermion mass terms after the EW symmetry

breaking, is given by

LY uk = Y ij
u ūiR q

j
LH + Y ij

d d̄iR q
j
L H̃ + Y ij

e ēiR ℓ
j
L H̃ + h.c. (1.18)

Here H̃ represents the charge conjugated Higgs field, defined by H̃ = i σ2H
∗; a remarkable

fact in the Standard Model is indeed that we only need one Higgs field in order to write

mass terms for both up-type and down-type fermions. We will have not anymore this

freedom when we construct a supersymmetric model, where the charge conjugated field H̃

is forbidden since the superpotential has to be holomorphic.

So far, we used both left handed and right handed fields notation; in the following, instead

of writing right handed fermion fields, we will use their left handed complex conjugates

antifields, e.g. ucL = C uTR, so that we will have only left handed Weyl spinors, see Appendix

A for details. This chiral notation is extremely convenient in order to extend the discussion

to a supersymmetric or a GUT context.

In this sense, the Yukawa sector can be written in a more simple way as

LY uk = Y ij
u uci qj H + Y ij

d dci qj H̃ + Y ij
e eci ℓj H̃ + h.c. (1.19)

After the EW symmetry breaking, these Yukawa couplings originate the fermion mass

matrices Mf = Yf v/
√
2, which can be diagonalized by a bi-unitary transformation

Mdiag
f = V c

f Mf Vf (1.20)

The V c
f matrices rotating the RH states are not physically relevant in the SM, while the left

handed rotations Vu,d give rise to the mixing in the quark (and lepton) charged currents

coupled to the W± bosons; in the case of quarks, this is determined by the Cabibbo-

Kobayashi-Maskawa (CKM) unitary matrix

VCKM = V †
u Vd =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (1.21)
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which in the standard parametrization takes the form

VCKM =


c12 c13 s12 c13 s13 e

−i δ

−s12 c23 − c12 s23 s13 e
i δ c12 c23 − s12 s23 s13 e

i δ s23 c13

s12 s23 − c12 c23 s13 e
i δ −c12 s23 − s12 c23 s13 e

i δ c23 c13

 (1.22)

with sij = sin θij and cij = cos θij . Then, the mixing pattern is described by only 4

parameters, the 3 mixing angles and the weak CP phase; actually, as a measure of CP

violation, it is sometimes useful to consider the Jarlskog invariant, which in the standard

parametrization reads

J = s12 s23 s13 c12 c23 c
2
13 sin δ (1.23)

Finally, to be honest we should mention another operator in the SM Lagrangian, which is

the so called QCD θ-term

Lθ = θ
g23

32π2
εαβµν Gaαβ G

a
µν (1.24)

which, although it is a total derivative, it has important physical implications we will

discuss in the following. One can also show that analogous topological terms for SU(2)

and U(1) are instead completely unphysical.

1.2 Further arguments: Supersymmetry and GUT

In the modern point of view, a given theory (e.g. the Standard Model) is always the

effective theory of a more complete underlying theory, which adequately describes physics

at a energy scale higher than a threshold M . This threshold is physical in the sense that

the complete physical spectrum includes particles with a mass of order M . For example,

in the case of the seesaw mechanism for neutrino masses, there is a neutrino field of mass

M . That scale acts as an UV cutoff on loop momenta.

The presence of fundamental scalar fields leads to the well known problem of quadratic

divergences as soon as one introduces a finite cutoff Λ in the theory. Indeed a diagram of

this type

12



generically gives a contribution

δm2 = λ

∫ Λ d4k

(2π)4
1

k2
∼ λ

16π2

∫ Λ

d2k ∼ λΛ2

16π2
(1.25)

to the scalar mass squared (here λ denotes the dimensionless quartic self coupling constant).

Namely, if we denote with m0 the bare mass, then at one loop level we obtain the mass

squared

m2 = m2
0 + αλ

Λ2

16π2
(1.26)

with α an order 1 constant. Plugging typical numbers, e.g. m ∼ 100 GeV (EW scale) and

Λ ∼ Mpl ∼ 1019 GeV, we see that m2
0/Λ

2 has to be adjusted to more than 30 orders of

magnitude, which is a very unsatisfactory fine tuning.

This happens because the scalar masses are not protected by any symmetry; more precisely,

in the case of a fermion mass loop, the correction will ever be proportional to the mass

itself, so the proportionality coefficient is dimensionless and it behaves as log Λ. This is

due to the fact that in the limit m→ 0 the theory exhibits an enhanced symmetry, which

is the chiral symmetry. In this sense, those parameters are technically natural, following

the ’t Hooft criterion.

The observation that, on the contrary of the fermion case, setting to zero the scalar mass

does not enhance the symmetry of the theory suggests the idea of relating a scalar field

to a fermion field by a new symmetry. Supersymmetry [9, 10, 11, 12, 13] is born in this

sense, solving the hierarchy problem [14, 15] by connecting representations of the Poincaré

group of different spin; the contributions of fermions to quadratic divergencies cancel that

of bosons, see Appendix B.

From a more technical point of view, supersymmetry transformations are just translations

in a generalized space, known as superspace, where we add anticommuting Grassmann

variables to the standard spacetime coordinates. In this context, standard fields are pro-

moted to superfields, which describe general supermultiplets.

The most general supersymmetric and gauge invariant action involving a chiral superfield

Φ and a gauge vector superfield V can be written as

L =

∫
d4θΦ† e2 g V Φ+

∫
d2θ (W (Φ) + h.c.) +

1

4

∫
d2θ (WαWα + h.c.) (1.27)

where g is the gauge coupling constant, W is the superpotential which is holomorphic in

the chiral superfields and Wα is the supersymmetric field strength that, in the most general
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case of a non abelian gauge theory, is given by

Wα = − 1

8 g
(DD)

(
e−2 g V Dα e

2 g V
)

(1.28)

where Dα is the supercovariant derivative.

It is important to mention that, in the case of an abelian gauge theory, there is an additional

term in the supersymmetric Lagrangian above, which is the Fayet-Iliopoulos D−term

LFI = ξ

∫
d4θ V (1.29)

In the case of the supersymmetric extension of the SM, so called Minimal Supersymmet-

ric Standard Model (MSSM), we promote the fields we wrote at the beginning with the

corresponding superfields containing the standard fermions as well as their superpartners:

Q =

(
U

D

)
∼
(
3, 2,

1

6

)
L =

(
N

E

)
∼
(
1, 2,−1

2

)
(1.30)

U c ∼
(
3, 1,−2

3

)
Dc ∼

(
3, 1,

1

3

)
Ec ∼ (1, 1, 1) (1.31)

Moreover, due to the holomorphicity of the superpotential, we need to introduce 2 inde-

pendent Higgs doublets

Hu =

(
H+
u

H0
u

)
∼
(
1, 2,

1

2

)
(1.32)

Hd =

(
H0
d

H−
d

)
∼
(
1, 2,−1

2

)
(1.33)

The superpotential with these notation has the simple form

W = Y ij
u U ci Qj Hu + Y ij

d Dc
i Qj Hd + Y ij

e Eci Lj Hd + µHuHd +W /BL (1.34)

where µ is the only dimensionful supersymmetric parameter, and W /BL contains the fol-

lowing gauge invariant terms

W /BL = λ1E
c LL+ λ2D

c LQ+ λ3 U
cDcDc + µ′ LHu (1.35)

which are dangerous since each of them breaks both baryon number and lepton number;

these terms are not present in the SM Lagrangian since there baryon and lepton number

are accidental symmetries. This part of the superpotential can be forbidden by introducing

an extra symmetry, known as R−symmetry or R−parity, defined as

R = (−1)3 (B−L)+2S =


+1: all observed particles

−1: superpartners
(1.36)
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Figure 1.1: Running for the inverse gauge coupling constants in the MSSM scenario.

It is important to say that also in the MSSM the Yukawa matrices remain totally arbitrary;

moreover, the presence of two independent Higgses with vevs ⟨Hu⟩ = vu = v sinβ and

⟨Hd⟩ = vd = v cosβ (v = 256 GeV) introduces another free parameter tanβ = vu/vd.

In this framework, also the idea of a grand unification of the fundamental forces (except

for gravity) is suggested [16, 17, 18]. Indeed, in the MSSM the one loop renormalization

group equations for the gauge coupling constants read

dgi
dt

=
B

(1)
i

16π2
g3i i = 1, 2, 3 (1.37)

where t = lnµ with µ renormalization scale, and B(1)
i = (335 , 1,−3) are the beta functions

for the gauge coupling constants of U(1), SU(2) and SU(3) respectively. In order to solve

these equations, we use the fact that, at µ =MZ , the fine structure constants2 is measured

as α−1
em(MZ) = 127.943± 0.027; this value is related to those for the EW gauge group as

α1(MZ) =
5

3

αem(MZ)

cos2 θW (MZ)
, α2(MZ) =

αem(MZ)

sin2 θW (MZ)
(1.38)

where sin2 θW (MZ) = 0.23117 ± 0.00016 and the 5/3 factor in the expression of α1

comes from the canonical normalization of the hypercharge generator. With these initial

conditions, we can see that the 2 coupling constants met each other at a scale MG ≃

2 · 1016 GeV; moreover, putting inside also the running of α3, using the experimental value

α3(MZ) = 0.1185± 0.0020 as initial condition, we see that all the 3 constants met at the
2For each gauge coupling constant g, the corresponding ‘fine structure constant’ is defined by α = g2/4π.
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same energy scale, within the experimental errors, see Fig. 1.1. A detailed discussion can

be found in the next chapter.

1.2.1 SU(5) unification

At scales of order MG, the Standard Model gauge group SU(3)×SU(2)×U(1) can be

consistently embedded into SU(5) [16], which at larger scales could be extended to larger

groups. Electroweak precision tests are in very good agreement with the predictions of

supersymmetric SU(5) model, while they exclude the non supersymmetric one3 [19, 20]. In

the context of SU(5), known quarks and leptons fit into the antifundamental and symmetric

representations as

(dc + ℓ)i ∼ 5i, (uc + q + ec)i ∼ 10i (1.39)

more precisely

5
α
i =



dc1

dc2

dc3

e

−ν


i

, 10αβ, i =



0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0


i

(1.40)

where α, β = 1, . . . , 5 are SU(5) indices, while i = 1, 2, 3 is a family index. Together with

these there are of course the 2 Higgses H ∼ 5 and H ∼ 5, which contain the SM Higgs

doublet and an heavy color triplet

5H = (T1, T2, T3, H
+, H0)t (1.41)

With these notations, in the minimal fashion of the model the superpotential terms re-

sponsible for the fermion masses are

W = Y ij
u 10i 10j H + Y ij

d 5i 10j H +
Y ij
ν

Mpl
(5iH) (5j H) (1.42)

where we include also a neutrino mass term. At GUT scale these Yukawa coupling reduces

to the MSSM ones with Y ij
d = Y ji

e , and therefore yd,s,b = ye,µ,τ . Although the b − τ

unification yb = yτ is a definite success of the model [21], on the other hand the predictions
3Notice that also a MSSM without GUT does not work, since unification at string scale implies a too

small value of the Weinberg angle at EW scale.
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ys = yµ and yd = ye are completely wrong, since they would implyms/md = mµ/me ∼ 200.

So, it is natural to consider that the Yukawa couplings in the superpotential are just

functions of the adjoint superfield of SU(5), that is, as a series expansion

Yij = Yij(Σ) = Y
(0)
ij + Y

(1)
ij

Σ

Mpl
+ · · · (1.43)

This means that we can assume that the operator Yij 5i 10j H contains the higher order

operator Y (1)
ij

Σ
Mpl

5i 10j H and so on. Since in general Σ · H contains 24 × 5 = 5 + 45, it

can distinguish the corresponding entries in Ye and Yd, giving rise to deviations from the

wrong prediction of minimal SU(5).

Moreover, there is still no explanation neither for the mass hierarchy, nor for the CKM

mixing pattern, since the Yukawa matrices are still arbitrary. For this reason we are mo-

tivated to go beyond the minimal SU(5) unification in order to implement new ideas that

could shed some more light on the origin of fermion masses and mixing.

The idea of Grand Unification solves interesting issues which are present in the Standard

Model, such as the electric charge quantization, which would remain unexplained other-

wise, and of course it addresses the gauge hierarchy problem. However, this is strictly

connected to the so called Doublet-Triplet splitting problem: indeed, as we wrote above,

the two Higgs doublets Hu and Hd, when embedded in the GUT multiplets, are unavoid-

ably accompanied by the colour triplet partners T and T , which would mediate a very fast

proton decay process unless their masses are of the order MG. The Higgs sector in the

minimal SUSY SU(5) model consists of two Higgses in fundamental 5 and antifundamental

5 representations

H = (T +Hu) ∼ 5, H = (T +Hd) ∼ 5 (1.44)

and a chiral superfield Σ ∼ 24 in adjoint representation. The most general superpotential

involving all these fields have the form

W =
M

2
Σ2 +

h

3
Σ3 +MH HH + f H ΣH (1.45)

The supersymmetric ground state ⟨Σ⟩ = (M/h) diag(2, 2, 2,−3,−3), ⟨H⟩ = ⟨H⟩ = 0

provides the symmetry breaking pattern SU(5) → SU(3) × SU(2) × U(1). In this case,

the masses of the T and Hu,d superfields are respectively

M3 =MH +
2 f

h
M and µ =MH − 3 f

h
M (1.46)
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Therefore, the light doublet µ ∼ MZ versus the heavy triplet M3 ∼ MG requires MH h ≃

3 f M with an accuracy of order 10−14; although supersymmetry makes this constraint sta-

ble against radiative corrections, this is nothing but a precise fine tuning of the parameters

in the superpotential.

1.2.2 Further ideas: SO(10) and SU(6)

Next to SU(5), we can consider SO(10) as grand unification group [22]; indeed, it is

the smallest group in which all the fermions in one family fit in the same representation,

which is the spinorial 16. In addition to the quarks and leptons of the SM, it also includes

the RH neutrino νc, which is a singlet of SU(5). This implies that now all the Yukawa

matrices could be in principle related by the SO(10) Clebsch factors, reducing the number

of fundamental parameters in the fermion sector.

The SO(10) symmetry can break down to the SM via two interesting channels: SO(10) →

SU(5) and SO(10) → SU(4) × SU(2) × SU(2)′. In order to break this symmetry down

to the SM we need a set of Higgses in representations 45, 54 and 16 + 16. In terms of the

SU(5) subgroup, their contents are

45 = 1 + 24 + 10 + 10, 54 = 24 + 15 + 15, 16 = 1 + 5 + 10 (1.47)

Moreover, the Higgs doublets Hu,d fit in the fundamental representation H of SO(10), that

in terms of SU(5) is

10H = 5(T,Hu) + 5(T ,Hd) (1.48)

while the three fermion families are arranged in chiral superfields 16i, i = 1, 2, 3 as

16i = 5(dc, ℓ)i + 10(uc, q, ec)i + 1(νc)i (1.49)

As a minimal extension of SU(5), we have the SU(6) model [23, 24, 25, 26, 27, 28, 29]: the

Higgs sector in this case consists in the supermultiplet Σ ∼ 35 in adjoint representation

and H+H in 6+6 representation, in analogy to 24 and 5+5 of SU(5). Differently from the

other GUT models, where the Higgs sector consists in two different sets (one for the GUT

symmetry breaking and another for the EW symmetry breaking), in SU(6) we have no

preferred superfield for the EW transition; indeed, 35 and 6+6 constitute a minimal Higgs

content needed for the local symmetry breaking pattern SU(6) → SU(3)× SU(2)×U(1).
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1.3 Standard Model: the Good, the Bad and the Ugly

Although the Standard Model works pretty well for the available precision tests (up to

TeV scale, except for some yet unconfirmed anomalies). Among its remarkable properties,

we can mention that the origin of mass is related to a unique dimensional order parameter,

which is the Higgs vev. In addition, we have a natural flavour conservation, since at tree

level the Z boson interacts diagonally with all the fermion fields.

However, it is clear that it cannot be the end of the story, since there are a lot of unanswered

questions therein. In the following, we briefly recall the most challenging puzzles of modern

particle physics, together with the most common approaches which try to explain them.

• Family Problem

The replication of families is one of the main puzzle in particle physics; indeed,

the 3 fermion families are in identical representation of the Standard Model gauge

group. In this context, precision tests also exclude the existence of a fourth sequential

chiral family, but on the other hand extra vector-like families could exist, even at

TeV scale; the issue in this case would be that, being vector-like, their masses will

be not anymore linked to the Higgs vev, but they are arbitrary parameters of the

theory. Related to this, there is the problem of the fermion mass hierarchy and

mixing angles pattern: indeed, the mass eigenstates obey mt : mc : mu = 1 : ϵ2 : ϵ4

and mb : ms : md = 1 : ϵ : ϵ2, with ϵ ∼ 1/20; moreover Vus ∼
√
ϵ, Vcb ∼ ϵ, Vub ∼ ϵ2.

The Standard Model does not contain any theoretical input that could explain this;

we can say it is technically natural in the sense that it can tolerate any pattern of

the Yukawa matrices, but their structures remain arbitrary. In this sense the origin

of the fermion mass hierarchy and the weak mixing pattern remains a mystery.

A common approach to this puzzle is to introduce a family symmetry [30, 31, 32,

33, 34, 35, 36, 37, 38], or horizontal symmetry, which is realized at some high scale

and then spontaneously broken by the vev of some flavon field(s). Then, depending

on the specific model, the breaking pattern of this symmetry will be reflected in the

fermion mass hierarchy and mixing. A quite complete picture can be found in the

non abelian SU(3)H gauge symmetry between the three families; this has to have

a chiral character, with LH and RH fermions transforming in the fundamental and
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antifundamental representation [39, 40], respectively, so that they cannot acquire a

mass without the breaking of SU(3)H [41, 42]. In chiral notation this means that

qi, u
c
i , d

c
i , ℓi, e

c
i ∼ 3 (1.50)

with i = 1, 2, 3 family index. This arrangement is compatible with a GUT extension

of the SM. For example, in an SU(5) context, we have the following representations

of SU(5)× SU(3)H

(dc, ℓ)i ∼ (5, 3), (uc, q, ec)i ∼ (10, 3) (1.51)

while in the context of SO(10) all these fermions, along with the RH neutrinos

νcL = C νR
T can be packed into the unique multiplet in the spinor representation of

SO(10), Ψi = (dc, ℓ, uc, q, ec, νc)i ∼ (16, 3).

As far as the fermion bilinears uci qj , d
c
i qj and eci ℓj transform in representations

3× 3 = 6+3, the fermion masses can only be induced via the higher order operators

χij

M
uci qj H +

χij

M
dci qj H̃ +

χij

M
eci ℓj H̃ + h.c. (1.52)

involving some horizontal scalars χ in symmetric χ{ij} ∼ 6 or antisymmetric χ[ij] =

εijk χk ∼ 3 representations of SU(3)H , and M is some effective scale. The effective

operators we wrote are invariant under SU(3)H by construction, but they actually

have a larger symmetry group U(3)H ; indeed, they feature an accidental global chiral

U(1) symmetry. Therefore, the three fermion families become massive only if U(3)H

is fully broken. In a natural realization, in the first step U(3)H is broken down to

U(2)H and the third family becomes massive, while mixing angles are all zero; then,

U(2)H breaks to U(1)H , the second family acquires mass and the CKM angle θ23

could be non zero; at this stage, the first family remain massless and unmixed with

the heavier generations. In the last step, U(1)H is also broken, so the first family

becomes massive and their mixings arise. In this way, the interfamily mass hierarchy

can be related to the hierarchy of flavon vevs inducing the horizontal symmetry

breaking U(3)H → U(2)H → U(1)H → nothing. As a simplest set of flavons we can

choose two triplets and one antisextet with the following vevs

⟨χ{ij}
3 ⟩ = diag(0, 0, V3), ⟨χ2i⟩ =


V2

0

0

 , ⟨χ1i⟩ =


0

0

V1

 (1.53)
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so that the total matrix of flavon vevs has the form

⟨χij⟩ = ⟨χ{ij}
3 + χ

[ij]
2 + χ

[ij]
1 ⟩ =


0 V1 0

−V1 0 V2

0 −V2 V3

 (1.54)

The hierarchies between the different Yukawa entries, corresponding to the interfam-

ily mass hierarchies, can be related to a hierarchy V3 ≫ V2 ≫ V1 in the horizontal

symmetry breaking chain U(3)H → U(2)H → U(1)H → nothing. Moreover, it is

important to note that the chiral global U(1)H symmetry can be associated with the

Peccei-Quinn symmetry provided that it is also respected by the Lagrangian of the

flavon fields. After this breaking, the theory reduces to the SM with one standard

Higgs doublet H, and so, in our construction the flavor will be naturally conserved

in neutral currents.

• B & L violating Operators

In the Standard Model Lagrangian we wrote previously, lepton number and baryon

number are realized as accidental global symmetries of the renormalizable interac-

tions; however, it is known that they have to be broken in order to have a good

baryogenesis mechanism (Sakharov conditions). Moreover, at this level there is no

possibility to have a mass term for the neutrino; this is because we typically do not

include a right handed neutrino in the Lagrangian, being a gauge singlet, and no

Majorana mass terms are allowed.

If we include a left handed antineutrino field, then it can have a mass term

Lν =
1

2
Mij ν

c
i ν

c
j (1.55)

which breaks lepton number; together with the standard Dirac mass term, this gen-

erates the so called seesaw mechanism: greater is the mass scale M , lighter the LH

neutrino will be.

Without the introduction of the RH neutrino, by the way, it is possible to get lepton

number violating masses by writing higher order operators in the so called Standard

Model Effective Field Theory. The Weinberg operator [43]

L5 =
bij
M

ℓi ℓj HH (1.56)
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with |bij | ∼ O(1) provides a Majorana mass term for the LH neutrino after the

electroweak symmetry breaking, mν ∼ v2/M ; in the seesaw picture, this operator

can be induced by exchange of heavy RH neutrinos [44, 45, 46]. The mass scale

M can be estimated by phenomenology: indeed, observations related to neutrino

flavour oscillations could be used to get M ∼ 1015 GeV, which is of the order of the

Grand Unification scale. Notice that, in the abscence of such external information,

the natural mass scale would be the Planck scale.

In the same way, other operators will break the accidental global symmetries of the

renormalizable Lagrangian, such as the dimension six operator

L6 ∝
1

M2
q q q ℓ (1.57)

which breaks baryon number, and contributes to the proton decay process p→ π0 e+

u

u

d

e+

d

d

p

π0

Proton decay is one of the key points when we discuss a Grand Unified Theory; limits

on the proton lifetime can be used to estimate the suppression scale in the dimension

six operator, which results to be of the order of the GUT scale, M ∼ 1015 GeV.

• Strong CP problem

Another unclear fact present in the Standard Model is the so called strong CP prob-

lem, or strong CP puzzle, which in the standard discussion is presented as a natu-

ralness problem related to the following term in the QCD Lagrangian [47, 48]

Lθ = θ
g23

32π2
εαβµν Gaαβ G

a
µν (1.58)

which is just a topological term, but it could have physical consequences due to the

non triviality of the QCD vacuum structure; indeed, QCD has a continuum of vacua,

labelled by the CP violating vacuum angle θ, which belong to different superselection

sectors. More precisely, the physical measurable quantity is

θ = θ + arg detMq (1.59)
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where Mq is the quark mass matrix. In the quantum theory, θ induces an electric

dipole moment for the neutron which, according to the current experimental bounds,

provides the upper limit

|θ| < 10−10 (1.60)

Thus, the puzzle relies in the fact that observations indicate that we live in a sector

with an extremely small (or zero) θ.

The axion solution eliminates this vacuum structure by making θ dynamical, relaxing

it to a CP invariant ground state. In the original model of Peccei and Quinn [49, 50,

51, 52], the axion field a(x) arises as a pseudo Goldstone boson of a spontaneously

broken anomalous U(1) global symmetry [53, 54, 55, 56, 57, 58, 33, 59]; then, by

a chiral rotation it is possible to move this field into the θ parameter, so that the

ground state energy will be proportional to

E ∝ cos

(
θ − a(x)

fa

)
(1.61)

where fa is the axion decay constant. Now if ⟨a⟩/fa = θ the ground state has no

effective θ dependence; moreover, a vanishing axion vev dynamically relaxes θ to

zero.

One of the most delicate aspects of the PQ mechanism is the fact that it relies on

a global U(1) symmetry, which has to be preserved to a great degree of accuracy in

order for the axion vev to be relaxed to zero, a precision compatible with the non

observation of the neutron electric dipole moment; this issue is known as the PQ

quality problem.

As we said before, non perturbative gravitational effects will break global symmetries

at some point; we can consider the effective operator

λ e−i δ
ϕn

Mn−4
pl

+ h.c. (1.62)

with λ real and δ is the phase coupling. In this parametrization we can take

ϕ =
fa√
2
ei a/fa (1.63)

The effect of this PQ breaking operator is to move the minimum of the axion

potential away from the CP conserving minimum of the QCD induced potential
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V (θ) = −m2
a f

2
a cos θ and shift it to [47]

⟨θ⟩ = n2m2
∗ sin δ

m2
a + n2m2

∗ cos δ
(1.64)

where we defined

m2
∗ =

λ

2
f2a

(
fa√
2Mpl

)n−4

(1.65)

From that analysis we get that, in order to be compatible with the observational

bounds on neutron electric dipole moment, the minimal PQ breaking operator has

to have n ≳ 12. The issue at this point will be to understand how to forbid lower

order operators without ad hoc assumptions.
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Chapter 2
Consistency of Grand Unification

We review the standard calculation of the gauge coupling running under renormaliza-

tion group at both one and two loop level. We study the consistency of Grand Unification

by looking at the behaviour of the strong coupling constant α3 near the Grand Unification

scale. Although at one loop level the three couplings meet each other with a very high pre-

cision, things are definitely worse at two loop level; the behaviour of the Yukawa coupling

for the top quark yt plays a crucial role in the discussion. An analysis of the behaviour

of yt as a function of its value at GUT scale provides interesting information about the

possible values of this coupling at electroweak (EW) scale, where we show it is precisely

constrained, as well as lower bound limits on the tanβ parameter. Moreover, we try to

improve the discussion on gauge coupling unification by taking into account the so called

threshold effects; we find that the three gauge couplings meet each other with a very good

precision if the supersymmetric thresholds are not all equal: following an argument based

on the gaugino mass parameters renormalization we explain why and what the relation

between these scales can be.

2.1 Gauge Coupling Renormalization

Let us consider a gauge group SU(3)× SU(2)× U(1), with corresponding gauge cou-

plings gi, i = 1, 2, 3. Then the renormalization group equations (RGE) for each of them

can be written as
dgi
dt

=
1

16π2
βgi =

1

16π2

[
β(1)gi +

1

16π2
β(2)gi

]
(2.1)
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where t = lnµ, with µ renormalization scale. Here we have included the one and two loop

contributions to the beta function.

2.1.1 One Loop Results

At one loop level these beta functions take the form

β(1)gi = B
(1)
i g3i (2.2)

where the coefficient B(1) is given by the well known result

B(1) = −11

3
C2(G) +

2

3
T (R)|f +

1

3
T (R)|s (2.3)

Here C2(G) is the quadratic Casimir of the group G, which equals N for SU(N) and

vanishes for an abelian group, while T (R) is defined by the normalization of the generators

in the representation R:

Tr(T a T b) = T (R) δab (2.4)

In the fundamental representation, T (R) = 1/2, while for the adjoint representation

T (R) = C2(G). The sum over all the fermions and scalars in (2.3) is understood.

In the non supersymmetric case, one can see that (2.3) takes the form

B
(1)
i =

(
4

3
Nf +

1

10
NH ,

4

3
Nf +

1

6
NH − 22

3
,
4

3
Nf − 11

)
(2.5)

where Nf is the number of families, and NH is the number of Higgs doublets. For Nf = 3

and NH = 1 this provides [60]

B
(1)
i, SM =

(
41

10
,−19

6
,−7

)
(2.6)

while in the Minimal Supersymmetric Standard Model (MSSM) equation (2.3) becomes

B
(1)
i =

(
2Nf +

3

5
Nud, 2Nf +Nud − 6, 2Nf − 9

)
(2.7)

where Nf is the number of generations and Nud is the number of pairs of Higgs doublets;

plugging Nf = 3 and Nud = 1 we get [60]

B
(1)
i,MSSM =

(
33

5
, 1,−3

)
(2.8)
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Figure 2.1: One Loop running for inverse gauge couplings. Left: Standard Model. Right:

Minimal Supersymmetric Standard Model.

In Fig. 2.1 we show the one loop running for the inverse coupling constants defined as

αi =
g2i
4π

(2.9)

for both SM and MSSM. We set the renormalization scale at the Z mass, MZ = 92GeV,

where we know the measured values of the electromagnetic fine structure constant and the

Weinberg angle [60]:

α−1
em(MZ) = 127.943± 0.027 , sin2 θW (MZ) = 0.23117± 0.00016 (2.10)

Using these we can set the initial values for α1 and α2, as well as the measured value for

α3 [61]

α1(MZ) =
5

3

αem(MZ)

cos2 θW (MZ)
, α2(MZ) =

αem(MZ)

sin2 θW (MZ)
, α3(MZ) = 0.1185± 0.0020

(2.11)

which corresponds to

α−1
1 (MZ) = 59.0199± 0.0002 , α−1

2 (MZ) = 29.58± 0.03 (2.12)

In the supersymmetric case we have room for grand unification; the energy scale at which

the two above couplings meet each other is our estimate for the Grand Unification scale

MGUT = (2.046± 0.060) · 1016 GeV (2.13)

where

α−1
1,2 (MGUT ) = α−1

G = 24.319± 0.031 (2.14)
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Moreover, it follows from the unification condition that, at EW scale, [62]

α−1
i (MZ)− α−1

j (MZ)

α−1
j (MZ)− α−1

k (MZ)
=
B

(1)
i −B

(1)
j

B
(1)
j −B

(1)
k

, i, j, k = 1, 2, 3 (2.15)

We can study the quality of unification by looking at the value of α3 at GUT scale by

taking into account also the uncertainty in (2.11); we get

α−1
3 (MGUT ) = 24.21± 0.14 (2.16)

in quite good agreement with (2.14).

2.1.2 Two Loop Results

Let us now see how much the next order corrections affect our result in the supersym-

metric case. We write again the one loop beta functions for the gauge couplings, as weel

as the two loop ones (see [63] for details)

β(1)gi = B
(1)
i g3i

β(2)gi = g3i

 3∑
j=1

B
(2)
ij g2j −

∑
x=u,d,e

Cxi Tr(Y †
x Yx)

 (2.17)

where

B
(1)
i =

(
33

5
, 1,−3

)
, B

(2)
ij =


199
25

27
5

88
5

9
5 25 24

11
5 9 14

 , Cu,d,ei =


26
5

14
5

18
5

6 6 2

4 4 0

 (2.18)

Here Yu, Yd and Ye are generic 3× 3 complex Yukawa matrices, whose eigenvalues are the

couplings (yu, yc, yt), (yd, ys, yb) and (ye, yµ, yτ ), respectively, and the index i in the last

matrix labels its rows.

We immediately see that, as expected, at two loop level the gauge coupling running depends

also on the Yukawa contributions; the one and two loop beta functions for these couplings,
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written in matrix form, are given by [63]

β
(1)
Yu

= Yu [ 3Tr(Yu Y †
u ) + 3Y †

u Yu + Y †
d Yd −

16

3
g23 − 3 g22 −

13

15
g21

]
β
(2)
Yu

= Yu [ −3Tr(3Yu Y †
u Yu Y

†
u + Yu Y

†
d Yd Y

†
u )− Y †

d Yd Tr(3Yd Y
†
d + Ye Y

†
e )− 9Y †

u Yu Tr(Y †
u Yu)

− 4Y †
u Yu Y

†
u Yu − 2Y †

d Yd Y
†
d Yd − 2Y †

d Yd Y
†
u Yu +

(
16 g23 +

4

5
g21

)
Tr(Y †

u Yu) + 8 g23 g
2
2

+

(
6 g22 +

2

5
g21

)
Y †
u Yu +

2

5
g21 Y

†
d Yd −

16

9
g43 +

136

45
g23 g

2
1 +

15

2
g42 + g22 g

2
1 +

2743

450
g41

]
(2.19)

β
(1)
Yd

= Yd [ Tr(3Yd Y
†
d + Ye Y

†
e ) + 3Y †

d Yd + Y †
u Yu −

16

3
g23 − 3 g22 −

7

15
g21

]
β
(2)
Yd

= Yd [ −3Tr(3Yd Y
†
d Yd Y

†
d + Yu Y

†
d Yd Y

†
u + Ye Y

†
e Ye Y

†
e )− 3Y †

d Yd Tr(3Y †
d Yd + Y †

e Ye)

− 3Y †
u Yu Tr(Y †

u Yu)− 4Y †
d Yd Y

†
d Yd − 2Y †

u Yu Y
†
u Yu − 2Y †

u Yu Y
†
d Yd + 8 g23 g

2
2

+

(
16 g23 −

2

5
g21

)
Tr(Y †

d Yd) +
6

5
g21 Tr(Y †

e Ye) +
4

5
g21 Y

†
u Yu +

(
6 g22 +

4

5
g21

)
Y †
d Yd

−16

9
g43 +

8

9
g23 g

2
1 +

15

2
g42 + g22 g

2
1 +

287

90
g41

]
(2.20)

β
(1)
Ye

= Ye [ Tr(3Yd Y
†
d + Ye Y

†
e ) + 3Y †

e Ye − 3 g22 −
9

5
g21

]
β
(2)
Ye

= Ye [ −3Tr(3Yd Y
†
d Yd Y

†
d + Yu Y

†
d Yd Y

†
u + Ye Y

†
e Ye Y

†
e )− 3Y †

e Ye Tr(3Y †
d Yd + Y †

e Ye)

− 4Y †
e Ye Y

†
e Ye +

(
16 g23 −

2

5
g21

)
Tr(Y †

d Yd) +
6

5
g21 Tr(Y †

e Ye) + 6 g22 Y
†
e Ye

+
15

2
g42 +

9

5
g22 g

2
1 +

27

2
g41

]
(2.21)

This means that the two loop RGE for the gauge couplings (with only top quark contri-

bution) are
dg1
dt

=
1

6400π4
[
199 g51 + 5 g31(27 g

2
2 + 528π2 + 88 g23 − 26 y2t )

]
dg2
dt

=
g32

1280π4
[
9 g21 + 5(16π2 + 25 g22 + 24 g23 − 6 y2t )

]
dg3
dt

= − g33
1280π4

[
−11 g21 + 5(48π2 − 9 g22 − 14 g23 + 4 y2t )

]
dyt
dt

=
yt

16π2

(
−13

15
g21 − 3 g22 −

16

3
g23 + 6 y2t

)
+

1

(16π2)2

{ yt
450

[
2743 g41 + 3375 g42

−800 g43 + 10 g21 (45 g
2
2 + 136 g23 + 54 y2t ) + 900 g22 (4 g

2
3 + 3 y2t )− 100 y2t (99 y

2
t − 72 g23)

]}
(2.22)
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Figure 2.2: Two loop running for gauge couplings without Yukawa contributions.

For the moment, let us consider only the self renormalization of the gauge couplings at

two loop without Yukawas, i.e. Yu,d,e ≡ 0. With exactly the same procedure as in the one

loop case, we show the running in Fig. 2.2, from which we get the estimate for the GUT

scale and inverse gauge coupling

MGUT = (3.326± 0.093) · 1016 GeV , α−1
G = 23.128± 0.025 (2.23)

and the corresponding value of α3 at GUT scale is

α−1
3 (MGUT ) = 23.87± 0.16 (2.24)

In the following we will study how the Yukawa contribution affects this result.

2.2 Top Yukawa Renormalization

The one loop RGE, provided by the first line of (2.19), reads

dyt
dt

=
1

16π2
yt

(
−13

15
g21 − 3 g22 −

16

3
g23 + 6 y2t

)
(2.25)

We can solve for yt by set different initial values at GUT scale, and then run back to the

EW scale (or top mass scale). Recall that the top running mass at EW scale is related to

its Yukawa coupling by

mt(µ ≃ mt) = yt(µ ≃ mt) · v · sinβ (2.26)
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Figure 2.3: Left: Running for yt in MSSM for different GUT scale values, from 0.5 to 3.

Right: Top Yukawa coupling at EW scale as a function of tanβ.

where v ≃ 174 GeV is the Higgs vacuum expectation value (vev) and sinβ is a free pa-

rameter we will constrain later. This mass is related to the measured pole mass mpole
t =

172.69± 0.30 GeV [61] by

mpole
t = mrun

t ·
{
1 +

4

3π
αs(µ ≃ mt)

}
(2.27)

which provides mrun
t = (165.05± 0.29) GeV. In Fig. 2.3 on the left we show the one loop

running for the top Yukawa for different values at GUT scale. We see that, in the limit

yt ≫ 1 at GUT scale, the corresponding EW value is yt(µ ≃ mt) ≃ 1.12, which means that

tanβ ≳ 1.639 (2.28)

so a typical values range tanβ ≳ 2 is perfectly working. Instead, the minimal value of yt

at EW scale is obtained in the limit tanβ → ∞, where

yt(µ ≃ mt)|min =
mrun
t

v
= 0.95 (2.29)

We show the behaviour of yt at EW scale as a function of tanβ on the right of Fig. 2.3;

formally

yt(µ ≃ mt) =
mrun
t

v
· 1

sinβ
=
mrun
t

v
·
√

1 + tan2 β

tanβ
(2.30)

By looking at equation (2.25), we see we can rewrite it in the form

d ln yt
dt

= −
3∑
i=1

ci

B
(1)
i

d ln gi
dt

+
1

16π2
6 y2t (2.31)

where ci = (1315 , 3,
16
3 ) and B

(1)
i are defined in equation (2.18). Here we used also the fact

that, from equation (2.1):

g2i =
16π2

B
(1)
i

d ln gi
dt

(2.32)
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Figure 2.4: Renormalization factor Bt(µ) and yt(µ) as a function of yt at GUT scale for

µ = mt.

Solutions to equation (2.31) can be written as [64]

yt(µ) = ytAt(µ)B
6
t (µ) (2.33)

where yt is the value of yt at GUT scale, and we defined the integrating factors

At(µ) = exp

[
− 1

16π2

∫ lnµ

ln(MGUT )
ci g

2
i (µ) d lnµ

]
=

3∏
i=1

[
gi(µ)

gi(MGUT )

]−ci/B(1)
i

Bt(µ) = exp

[
1

16π2

∫ lnµ

ln(MGUT )
y2t (µ) d lnµ

] (2.34)

In Fig. 2.4 we show the behaviour of the renormalization factor Bt as a function of the

GUT value yt for µ ≃ 172 GeV, i.e. the top mass, as well as the top Yukawa at EW scale

as a function of ȳt. At this scale the other factor results to be At ≃ 3.532.

Alternatively, one can also solve equation (2.25) by using the ansatz

yt(µ) = Q(µ)Yt(µ) (2.35)

where Q(µ) is an unknown function which has to be determined, and Yt(µ) is the solution

of the associated homogeneous equation

16π2
dYt
dt

= Yt

(
−13

15
g21 − 3 g22 −

16

3
g23

)
= −

3∑
i=1

ci g
2
i Yt (2.36)
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Figure 2.5: Left: Inverse α at GUT scale as a function of yt at EW scale. Right: GUT

scale as a function of yt at EW scale.

whose solution is of course

Yt(µ)

Yt(µ̄)
=

3∏
i=1

[
gi(µ)

gi(µ̄)

]−ci/B(1)
i

(2.37)

which is nothing else than the At(µ) factor we defined in equation (2.34). Thus, by plugging

(2.35) into (2.25) one gets an equation for the function Q(µ):

−1

2

d(Q−2)

dt
=

6

16π2
Y 2
t (2.38)

which has solution

1

Q2(µ̄)
− 1

Q2(µ)
=

1

16π2

∫ lnµ

ln µ̄
12Y 2

t (µ) d lnµ (2.39)

One can easily check that, as long as (2.39) holds, then (2.35) and (2.33) coincide.

2.2.1 Gauge Coupling Running Improved

Let us now study how much the top Yukawa coupling affects the previous two loop

result. We simply solve the full coupled equations (2.22), by choosing as initial conditions

for yt different values in the range (0.95 − 1.12), since as we seen in the previous section

this is the range in which yt (evaluated at EW scale) is constrained. We get the following

range for the estimate of the GUT scale and the corresponding inverse αG:

MGUT = (3.14±0.11−3.27±0.12)·1016 GeV , α−1
G = (23.504±0.043−23.241±0.085)

(2.40)

resulting in a variation of the order (1.7− 5.6)% with respect to the self renormalization
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Figure 2.6: Left: Gauge coupling running for ΛS = 3 TeV. Right: Running for yt for differ-

ent GUT scale values, from 0.5 to 3. From MGUT to ΛS we run with the supersymmetric

beta, while below ΛS we use the SM one.

case. The corresponding interval of values for α3 at GUT scale results to be

α−1
3 (MGUT ) = (23.94± 0.13− 24.09± 0.16) (2.41)

and we see that this is still worse than the one loop computation. We show both these

results in Fig. 2.5.

2.3 Thresholds Effects

Let us now review the previous calculations by considering that MSSM beta functions

(2.7) hold above a supersymmetry breaking scale [65]; below that scale we run with the

usual SM renormalization group equations (2.5). Then, the value of the couplings at the

breaking scale are taken as new initial conditions for the running with the supersymmetric

RGE.

2.3.1 Common Threshold

We consider a common supersymmetry breaking scale for the 3 couplings of the order

ΛS ≃ 3 TeV. In this case we can proceed as in the first section by determining the GUT

scale by the intersection of α1 and α2; this provides

MGUT = (7.25± 0.43) · 1015 GeV , α−1
1,2 (MGUT ) = α−1

G = 26.79± 0.04 (2.42)
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Still, the estimated value of α3 at GUT scale is in a worse agreement with the above value,

since

α−1
3 (MGUT ) = 25.93± 0.17 (2.43)

We show this running on the left of Fig. 2.6. Instead, below ΛS the top Yukawa coupling

obeys
dyt
dt

∣∣∣∣
SM

=
1

16π2
β(1)yt =

yt
16π2

(
−17

20
g21 −

9

4
g22 − 8 g23 +

9

2
y2t

)
(2.44)

while above ΛS we recall that

dyt
dt

∣∣∣∣
MSSM

=
yt

16π2

(
−13

15
g21 − 3 g22 −

16

3
g23 + 6 y2t

)
(2.45)

Now, we solve these equations by setting different values for yt at GUT scale, then run

back with the supersymmetric beta function to ΛS ≃ 3 TeV, and then by using the value

of yt there as a new initial condition for a running with the SM beta function.

The results are shown on the right of Fig. 2.6; we can estimate the minimal value of tanβ

in this case by looking at the maximum value that yt assumes at EW scale in this case.

We get yt(µ ≃ mt) ≲ 1.198, which provides

tanβ ≳ 1.340 (2.46)

2.3.2 Different Thresholds

However, we can proceed in an alternative way, by considering that the above thresholds

are not equal for all the gauge couplings; this can be motivated by the following argument.

We consider the one loop running for the 3 gaugino mass parameters Mi, which are given

by [63]
dMi

dt
=

2 g2i
16π2

B
(1)
i Mi (2.47)

where gi are the gauge couplings and B(1)
i are the usual one loop beta function coefficients

given by (2.7). We can solve equations (2.47) by requiring that, at GUT scale, the three

parameters will be all equal to each other, and of order e.g. 1 TeV; we show the result in

Fig. 2.7. Moreover, from the definition (2.9) we can write the one loop RGE for the gauge

couplings in terms of αi as
dαi
dt

=
B

(1)
i

2π
α2
i (2.48)
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Figure 2.7: One Loop running for the gaugino mass parameters.

From (2.47) and (2.48) we can see that the ratio Mi/αi is renorm-invariant

d

dt

(
Mi

αi

)
= 0 (2.49)

so that we can use the known values of the couplings at some scale in order to get infor-

mation about the gaugino mass parameters at lower energies; in particular, at EW scale

we have

M3 :M2 :M1 = 7 : 2 : 1 (2.50)

Therefore, if at first approximation we neglect the slightly different values of M1 and M2 at

low scale, we can study what happens if we consider 2 different supersymmetry thresholds,

let’s say ΛW and ΛS for the electroweak and strong sector, respectively. Naively, one could

imagine that, if these scales are in a similar ratio as in (2.50), then the corresponding values

of α−1
G and α−1

3 at GUT scale should become again compatible. In order to see this, we

first construct a table in which we calculate the GUT scale and the inverse αG for different

values of the ΛW threshold.

Following our procedure described at the beginning of this chapter, the values of MGUT

and αG will only depend on the electroweak threshold. The value of α3 at GUT scale,

instead, depends on both ΛW and ΛS ; in the following table we show the numerical values

of α−1
3 (MGUT ) as a function of the independent thresholds, in order to see if our guess

based on the above gaugino mass argument is justified.
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ΛW (TeV) 1 2 3 4

MGUT (1015 GeV) 10.06± 0.60 8.18± 0.49 7.25± 0.43 6.66± 0.40

α−1
1,2 (MGUT ) = α−1

G 26.01± 0.04 26.51± 0.04 26.79± 0.04 27.00± 0.04

Table 2.1: GUT scale and inverse coupling constant for different values of the electroweak

supersymmetry threshold.

PPPPPPPPPPPPP
ΛS (TeV)

ΛW (TeV)
1 2 3 4

1 25.39± 0.17 25.29± 0.17 25.24± 0.17 25.19± 0.17

2 25.83± 0.17 25.73± 0.17 25.68± 0.17 25.64± 0.17

3 26.09± 0.17 25.99± 0.17 25.94± 0.17 25.89± 0.17

4 26.27± 0.17 26.18± 0.17 26.12± 0.17 26.08± 0.17

5 26.42± 0.17 26.32± 0.17 26.26± 0.17 26.22± 0.17

6 26.53± 0.17 26.43± 0.17 26.38± 0.17 26.34± 0.17

7 26.63± 0.17 26.53± 0.17 26.47± 0.17 26.43± 0.17

8 26.72± 0.17 26.62± 0.17 26.56± 0.17 26.52± 0.17

9 26.79± 0.17 26.69± 0.17 26.63± 0.17 26.59± 0.17

10 26.86± 0.17 26.76± 0.17 26.70± 0.17 26.66± 0.17

11 26.92± 0.17 26.82± 0.17 26.76± 0.17 26.72± 0.17

12 26.97± 0.17 26.88± 0.17 26.82± 0.17 26.78± 0.17

13 27.02± 0.17 26.93± 0.17 26.87± 0.17 26.83± 0.17

14 27.07± 0.17 26.97± 0.17 26.92± 0.17 26.88± 0.17

15 27.12± 0.17 27.02± 0.17 26.96± 0.17 26.92± 0.17

16 27.16± 0.17 27.06± 0.17 27.00± 0.17 26.96± 0.17

17 27.20± 0.17 27.10± 0.17 27.04± 0.17 27.00± 0.17

Table 2.2: Inverse strong coupling constant at GUT scale for different combinations of

supersymmetry thresholds.

In red we show the values which are compatible with the inverse couplings in Table 2.1,

corresponding to supersymmetry thresholds that are consistent with Grand Unification,

while in blue we put the results in the common threshold scenario discussed previously,
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Figure 2.8: One Loop running for the inverse gauge couplings with different supersymmetry

thresholds. ΛW = 1 TeV for the electroweak sector, ΛS = 3 TeV for the strong sector.

showing that they are further and further from being consistent with the corresponding

α−1
G as the EW thresholds increases.

From these calculations we see that there is room for Grand Unification with coherent

values of the strong coupling constant at GUT scale if the ratio of the threshold energies

is of the order of 3− 5. Indeed, if we evaluate (2.50) at TeV scale we get M3 :M2 :M1 ≃

5.87 : 1.94 : 1, which means M3/M1,2 ∼ 3− 5.

In order to not take a too large values of ΛS , we show as an example the quite reasonable

case ΛW = 1 TeV and ΛS = 3 TeV in Fig. 2.8, where

α−1
G = 26.01± 0.04 and α−1

3 (MGUT ) = 26.09± 0.17 (2.51)

Below we complete Table 2.1 with the inverse strong coupling constant at GUT scale for

the ratio ΛS/ΛW ≃ 3.5.

We see that the unification is perfectly consistent for all the values of the electroweak

threshold.

2.4 Conclusions

We recalled how the gauge couplings and the (top) Yukawa coupling run under the

renormalization group flow at one and two loop level. The analysis for the top Yukawa
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ΛW (TeV) 1 2 3 4

MGUT (1015 GeV) 10.06± 0.60 8.18± 0.49 7.25± 0.43 6.66± 0.40

α−1
1,2 (MGUT ) = α−1

G 26.01± 0.04 26.51± 0.04 26.79± 0.04 27.00± 0.04

α−1
3 (MGUT ) 26.09± 0.17 26.53± 0.17 26.73± 0.17 26.88± 0.17

Table 2.3: GUT scale and inverse coupling constant for different values of the electroweak

supersymmetry threshold. The strong threshold is taken as ΛS = 3.5ΛW .

showed that yt has to be strongly constrained at EW scale, which also provides a lower

bound limit for tanβ; essentially models with moderate tanβ ≳ 2 are available, while

the tanβ = 1 case is ruled out. Instead, on the gauge coupling side, we made multiple

observations: the MSSM renormalization group running at two loop level make the one

loop result definitely worse. We have been motivated to improve the calculation by taking

into account threshold effects, where we consider a first running following the SM RGE

below a supersymmetry breaking scale, and a supersymmetric model above. However, we

have shown that, if this scale is the same for all the three gauge couplings, then the Grand

Unification is absolutely inconsistent, since the values of α−1
3 at GUT scale and α−1

G are

in disagreement by at least 4σ. Then, by looking at the running of the gaugino mass

parameters, we study the case in which the electroweak threshold is different from that

of the strong coupling; we show finally that if these scales are in a similar ratio as the

corresponding gaugino masses (e.g. at TeV scale) then α−1
3 at GUT scale and α−1

G become

compatible within less than 1σ; color is crucial in renormalization group running.
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Chapter 3
Renormalization Group flows and

Emergent Symmetries

We discuss the following proposition: Renormalization Group flow of quantum theory

with a biased symmetry exhibits a fixed hypersurface at which the symmetry is exact.

Such emergent symmetries may have important phenomenological implications, including

supersymmetric models, gauge theories, and massive gravity.

3.1 Emergent symmetries

Ever since the seminal works by Noether [66], Weyl [67], Heisenberg [68] and Wigner

[69], the role of symmetries in particle physics is ubiquitous. Symmetries provide the clas-

sification of particles, dictate conservation laws in their interactions, are instrumental in

solving dynamical problems, etc. Some known symmetries have fundamental character,

e.g. gauge symmetries of the Standard Model (SM). These are the precise symmetries of

the Lagrangian used as postulated theoretical inputs when building the particle models.

These symmetries can be broken spontaneously (by the vacuum state) but not explicitly.

One also often deals with the controllable breaking of symmetries, such as spontaneous and

explicit soft or anomalous breaking of symmetries. Some of the global symmetries emerge

accidentally owing to the theoretical structures dictated by postulated fundamental sym-

metries (as e.g. baryon and lepton symmetries or isospin symmetry in the SM context) and

in principle are approximate symmetries. Some other symmetries as conformal symmetry
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can be exact symmetries of the classical Lagrangian but are broken by the renormalization

group flow of the dimensionless constants since the mass scale emerges due to dimensional

transmutation.

Here we would like to discuss another, in our opinion important class of emergent sym-

metries. These are symmetries that manifest themselves only at some scales in a priori

asymmetric theory. The central result of this chapter is the following proposition.

Consider a quantum field theory with a set of fields Φ and parameters (coupling constants)

λk which is described by an action S(Φ, λk, µ) at a renormalization scale µ. Under the

renormalization group (RG) evolution, the theory flows towards a fixed hypersurface given

by fi(λk) = 0 in the parameter space at which β-function of the constraint fi vanishes and

the theory exhibits an enhanced symmetry.

The proof is rather straightforward. The enhanced symmetry under the constraints fi(λk) =

0 on the theory parameters implies that the variation of the generating functional of the

constrained theory Z =
∫
DΦ δ[fi(λk)] exp[i S] vanishes under the symmetry transforma-

tions δZ = 0, i.e.

δS +A = i

∫
ddx ci fi(λk) , (3.1)

where A is given by an anomalous variation of the functional measure, A = ln δ(DΦ)

and ci are the auxiliary Lagrange multipliers that implement the constraints fi = 0. This

variation does not depend on the renormalization scale, that is

dci
dt

fi + ci
dfi
dt

= 0 , (3.2)

where t = lnµ. The last equation in turn implies

βfi = 16π2
dfi
dt

= 0 (3.3)

on the constraint hypersurface fi = 0. Therefore, the constraint are fixed hypersurfaces of

the RG equations.

This observation has significant implications for our understanding of the role of biased

symmetries. In effect, any a priori asymmetric theory exhibits an emergent symmetry,

providing the symmetry-enhanced hypersurface exists. The emergent symmetries are a

common feature of many condensed matter systems, while remain less explored in high
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energy physics. We believe they can provide new insights into fundamental problems. One

such is the naturalness of physical theories, which according to common lore demands some

enhanced symmetries [70]. These symmetries may be emergent rather than the fundamen-

tal feature of the theory. The emergent nature of spacetime symmetries such as relativistic

invariance [71] and/or supersymmetry [72, 73] are other interesting venues for exploration.

Finally, gauge symmetries may also be an emergent description in some energy domain of

some asymmetric (perhaps entirely unconventional) theory [72, 74].

In what follows, we discuss a few examples that illustrate our proposition. While these

examples are simplistic and are set for illustration purposes only, we hope different emer-

gent symmetries discussed below can be incorporated into more elaborate realistic physics

models.

3.2 Emergent global symmetries

It is commonly believed that global symmetries are incompatible with a theory of

quantum gravity. Nevertheless, some global symmetries, such as the chiral symmetry of

QCD, are instrumental in understanding low energy physics. It is conceivable to think

that such global symmetries are emergent.

3.2.1 Two real scalars

As a simple example, let us consider first a toy model, first discussed in [72], which

involves two real scalar fields ϕi (i = 1, 2). It exhibits two discrete symmetries under

independent sign reflections ϕ1 → −ϕ1 and ϕ2 → −ϕ2, and in addition a discrete exchange

symmetry ϕ1 ↔ ϕ2. The most general Lagrangian including renormalizable interactions

that respect these symmetries reads:

L =
1

2
(∂µϕi)

2 − λ

2

(
ϕ41 + ϕ42

)
− λ′ ϕ21 ϕ

2
2

=
1

2
(∂µϕi)

2 − λ

2

(
ϕ21 + ϕ22

)2 − (λ′ − λ)ϕ21 ϕ
2
2 (3.4)

Stability conditions require λ > 0 and λ′ > −λ.

One can easily see that three particular adjustments of couplings lead to enhanced sym-
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Figure 3.1: Left: Beta function for the ratio of couplings r = λ′/λ. Right: Running for

the ratio for different initial conditions. The black solid lines correspond to the decoupling

limit, while the dashed one to the enhanced symmetry line. The stability line is also

represented in red.

metries in this theory. Namely, λ′ = 0 and λ′ = 3λ corresponds to the decoupling limit1,

where the original Fock space branches out into two orthogonal Fock spaces with the asso-

ciated doubling of symmetries (e.g., Poincare invariance). A more interesting case is λ′ = λ

when the global O(2) symmetry emerges. These limits of the theory are indeed seen in RG

flows, by our proposition. The (one-loop) beta functions can be computed as:

β
(1)
λ = 36λ2 + 4λ′2 , β

(1)
λ′ = 24λλ′ + 16λ′2 (3.5)

For our purpose, it is sufficient to inspect the RG flow of the ratio of couplings, r = λ′/λ,

which is governed by the following equation:

dr

dt
=

β
(1)
r

(4π)2
=

1

(4π)2
λβ

(1)
λ′ − λ′ β

(1)
λ

λ2
=

λ

4π2
r (r − 1) (3− r) . (3.6)

It is evident from Eq. (3.6) that r = 0, 1 and 3 are the RG fixed-points. The nature of

these fixed points can be determined by inspecting the derivative of βr near the respective

fixed point. Considering the bounded from below potentials only (λ > 0 and r > −1), we

see that O(2) symmetric fixed-line r = 1 (i.e. λ′ = λ) is an infrared (IR) fixed point; on

the contrary, near the fixed points r = 0 (i.e. λ′ = 0) and r = 3 (i.e. λ′ = 3λ) dβr/dr is

negative and hence these are UV fixed points, see Fig. 3.1 on the left. Now let us look
1For λ′ = 3λ the decoupling is manifest after changing the field variables: φ1 = (ϕ1 + ϕ2)/

√
2, φ2 =

(ϕ1 − ϕ2)/
√
2.
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at Fig. 3.1 on the right: these are the solutions (for different initial conditions) of the

equation
dr

dx
=
r (r − 1) (3− r)

r2 + 9
, (3.7)

where x = lnλ. This can be obtained by eliminating the lnµ dependence from the RG

equations.

As we can see, for 1 ≤ r ≤ 3 at renormalization scale the theory flows towards the decou-

pling limit in the UV, while it reassembles itself in a global O(2) symmetric theory in the

IR, being r = 1 the enhanced symmetry line. Moreover, we see that for r > 3 or r < 0 at

renormalization scale the theory still flows towards the decoupling limit, but the IR fixed

lines will be no more an attractor; in the latter case we see also that the theory is no more

stable, since the stability condition r > −1 will be sooner or later violated.

3.2.2 Two complex scalars

As a straightforward generalization, let us consider the following model for 2 complex

scalar degrees of freedom ϕ1 and ϕ2; the most general potential consistent with a U(1)1 ×

U(1)2 symmetry together with independent sign reflection and exchange ϕ1,2 → ϕ2,1 is

V =
λ

2
(ϕ†1ϕ1)

2 +
λ

2
(ϕ†2ϕ2)

2 + λ′ (ϕ†1ϕ1)(ϕ
†
2ϕ2)

=
λ

2

(
|ϕ1|2 + |ϕ2|2

)2
+ (λ′ − λ) |ϕ1|2|ϕ2|2 (3.8)

The one and two loop beta functions for these couplings read

β
(1)
λ = 10λ2 + 2λ′2, β

(2)
λ = −60λ3 − 10λλ′2 − 8λ′3

β
(1)
λ′ = 8λλ′ + 4λ′2, β

(2)
λ′ = −20λ2 λ′ − 48λλ′2 − 10λ′3

The RG flow for the ratio r = λ′/λ is governed by the one loop equation

dr

dt
= − λ

8π2
r (r − 1)2 . (3.9)

It is clear that the fixed points are r = 0 (corresponding to the decoupling limit) and r = 1

(corresponding to an enhanced global U(2) symmetry). Although r = 0 results to be an

UV fixed point (since the derivative of β(1)r is negative) we need for a two loop contribution

in order to determine the nature of the other fixed point, since it gives a null derivative
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Figure 3.2: Left: Beta function for the ratio of couplings r = λ′/λ. Right: Running for

the ratio for different initial conditions. The black solid line corresponds to the decoupling

limit, while the dashed one to the enhanced symmetry line. The stability line is also

represented in red.

at one loop2; in Fig. 3.2 we show the analogous results of the previous case. A simple

calculation provides

β(2)r = 8λ2 r (r − 1) (r2 + r − 5) , (3.10)

whose derivative is negative for r = 1, thus being an UV fixed point.

Moreover, dβ(2)r /dr|r=0 > 0: one can notice that the two-loop contribution has the oppo-

site behaviour with respect to the one loop case. At the perturbative level, this will not

change the nature of the fixed point since this contribution will be very suppressed by the

two loop phase space extra factor 16π2 with respect to the previous one3.

3.2.3 Two Higgs doublets

Let us consider two complex doublets ϕ1 and ϕ2 of two different global symmetries

U(2)1 and U(2)2. The general Lagrangian includes the terms

L = −λ
2
(ϕ†1ϕ1)

2 − λ

2
(ϕ†2ϕ2)

2 − λ′ (ϕ†1ϕ1)(ϕ
†
2ϕ2)

= −λ
2

(
|ϕ1|2 + |ϕ2|2

)2 − (λ′ − λ) |ϕ1|2|ϕ2|2 (3.11)

2Formally one can see that, for 0 < r < 1 at renormalization scale, the theory reassembles itself into

an U(2) symmetric theory in the IR and flows towards the decoupling limit in the UV, while for r > 1 the

theory is decoupled in the UV, but there is no IR fixed line.
3Indeed, the derivative of the full beta β(1)

r + 1
16π2 β

(2)
r is still negative for r = 0.
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Figure 3.3: One loop beta function for the ratio of couplings for the 2 Higgs model. On

the local minimum it is not possible to determine the nature of the fixed point; a higher

loop level is needed.

where we again impose a discrete symmetry ϕ1 ↔ ϕ2 under the exchange of two U(2)

factors. Obviously, in the limit λ′ − λ → 0 this model acquires a larger symmetry U(4).

The one and two loop beta functions are

β
(1)
λ = 12λ2 + 4λ′2, β

(2)
λ = −78λ3 − 20λλ′2 − 16λ′3

β
(1)
λ′ = 12λλ′ + 4λ′2, β

(2)
λ′ = −72λ2 λ′ − 30λλ′2 − 12λ′3

We can determine the nature of the fixed points by inspecting the RG flow of the ratio

r = λ′/λ; at one loop level we get

β(1)r = −4λ r2 (r − 1) (3.12)

which has r = 0 and r = 1 as fixed points; the former corresponds to the decoupling limit.

By evaluating the derivative of this beta

dβ
(1)
r

dr
= 4λ r (2− 3 r) (3.13)

we see that it is negative for r = 1, being it an UV fixed point, while it is zero for

r = 0; this means that we need to inspect the two loop corrections in order to determine

the nature of the fixed point relative to the decoupling limit, see Fig. 3.3. Indeed

β(2)r = 2λ2 r (r − 1) (8 r2 + 12 r − 3) . (3.14)
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Evaluating the derivative of this beta with respect to r for r = 0 we get dβ(2)r /dr|r=0 > 0;

it is an IR fixed point. In summary, there is an UV attractive fixed point corresponding

to an emergent global U(4) symmetry.

3.3 Emergent supersymmetry

Supersymmetry is the unique non-trivial extension of Poincare invariance, which pro-

vides important insights into several theoretical and phenomenological aspects of high

energy physics, such as strongly coupled theories or stability of hierarchies of scales. There-

fore, it is interesting to study systems that exhibit emergent supersymmetry.

3.3.1 Emergent Wess-Zumino model

A theory, for having a possible supersymmetric realization, must contain an equal

amount of fermionic and bosonic degrees of freedom. A simple system that exhibits this

property is a Higgs-Yukawa model with a complex scalar field ϕ and a 2-component Weyl

spinor ψ. The most generic Lagrangian containing only renormalizable interactions reads4:

L = |∂µϕ|2 + i ψ† σ̄µ ∂µψ −λ (ϕ∗ϕ)2 − y(ϕψ2 + h.c.) (3.15)

where the Yukawa coupling constant y can be made real by a phase transformation of the

fields. For λ = y2 this theory exhibits an enhanced spacetime symmetry, the (on-shell)

N = 1 supersymmetry, when the Lagrangian can be obtained from the superpotential

W = (y/3)Φ3 with Φ being a chiral superfield containing ϕ and ψ. We did not include in

the Lagrangian (3.15) the mass term. The fermion mass term mψ2 is forbidden by U(1)

symmetry which in supersymmetric context corresponds to U(1)R symmetry. The scalar

mass term µ2ϕ†ϕ can be interpreted as a soft supersymmetry breaking term.

Let us examine RG flows of couplings, which are governed (at one loop) by the following

β-functions:

β(1)y = 6 y3, β
(1)
λ = 20λ2 + 8λ y2 − 16 y4. (3.16)

4For the sake of brevity, we choose to enforce an unbroken global U(1) symmetry: ϕ → e2 i α ϕ, ψ →

e−i α ψ.
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Figure 3.4: RG flows towards N = 1 supersymmetric IR fixed-line λ = y2 (red dashed) in

the Wess-Zumino model.

As in the previous section, it is sufficient to inspect the evolution of the ratio, r = λ/y2.

At one loop, we get
β
(1)
r

16π2
=
dr

dt
=

y2

4π2
(r − 1) (4 + 5r) . (3.17)

In the stable domain (λ > 0), the model indeed exhibits N = 1 supersymmetric fixed-

line λ = y2 (i.e. r = 1), together with the decoupling fixed-point y = 0. By taking the

derivative of β(1)r in (3.17) we get

dβ
(1)
r

dr
= 4 y2 (10 r − 1) . (3.18)

Evaluating this expression in r = 1, we get a positive value. Therefore, the supersymmetric

fixed-line is an IR attractor (see also Fig. 3.4).

Now we calculate also two-loop contributions:

β(2)y = 4 y5 − 32 y3 λ+ 4 y λ2,

β
(2)
λ = −240λ3 − 80λ2 y2 + 16λ y4 + 256 y6. (3.19)

In the supersymmetric limit λ = y2 ≡ a, one has

βλ = 2 y βy . (3.20)

This remains satisfied even at two-loop level: indeed, one obtains a unique beta function

β
(2)
λ = 2 y β(2)y = −48 a6 . (3.21)
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The Lagrangian (3.15) can be presented as

L = L(Φ)WZ + λ̄ [(Φ†Φ)2]D , (3.22)

where the first term corresponds to the supersymmetric Lagrangian of the Wess-Zumino

model with Φ(ϕ, ψ) being a chiral superfield, i.e. Lagrangian (3.15) with the scalar quartic

coupling taken as λ = y2. The second term can be considered as a (hard) supersymmetry

breaking D-term. For β-function of corresponding coupling constant λ̄ = λ− y2 we get

β
(1)

λ̄
= λ̄ (48 y2 + 20 λ̄) (3.23)

β
(2)

λ̄
= −λ̄ (816 y4 + 808 λ̄ y2 + 240 λ̄2)

We see that supersymmetry breaking D-term in (3.22) disappears at low energies: λ̄ = 0

is an IR fixed point at two-loop level.

3.3.2 Emergent N = 1 supersymmetric gauge theory

Here we consider a few models with gauge symmetries: first, we focus on a Yang-Mills

theory, showing there the possibility of having an IR emergent supersymmetry; second, we

emphasize that one cannot achieve the same situation if the starting point is a model with

a U(1) gauge symmetry only.

SU(2) gauge model

Let us take a pure Yang-Mills model (with a gauge symmetry e.g. SU(2) for simplicity)

complemented by a two-component fermion χ in adjoint (triplet) representation, so that

the number of bosonic and fermionic degrees of freedom are equal. The Lagrangian of this

theory reads:

L0 = −1

4
Gaµν G

µν
a + i χ† σ̄µDµχ (3.24)

where Dµ = ∂µ − i g Aaµ Ta is a covariant derivative, with Ta (a = 1, 2, 3) being generators

of SU(2) in respective representation. Hence, this model contains only a gauge coupling

constant g, with β(1)g = −6 g3.

This model automatically exhibits exact N = 1 supersymmetry, as a consequence of the

gauge symmetry: Lagrangian (3.24) describes N = 1 super Yang-Mills theory. The mass

term m
2

(
χ2 + h.c.

)
, if any, can be interpreted as a soft supersymmetry breaking term.
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Next, we consider a model that includes gauge interactions and multiple couplings. We

add matter species as a Weyl fermion ψ and a scalar ϕ both in a doublet representation

of SU(2), so that the numbers of fermion and boson degrees of freedom are again equal.

(In fact, such a toy theory is ill-defined since it has global SU(2) anomaly [75], but we

consider it first for the sake of simplicity). The most general interaction Lagrangian, besides

the gauge interactions (3.24), contains the following terms with dimensionless coupling

constants:

L = −λ
8

(
ϕ†ϕ

)2
− 1√

2

(
y ϕ† τa ψ χa + h.c.

)
(3.25)

where τa (a = 1, 2, 3) are the Pauli matrices which act, in the second term, between the

doublets ϕ and ψ. The Yukawa constant y can be rendered real and positive by the phase

transformations. The vacuum stability condition implies λ > 0 for the quartic scalar

coupling.

The one-loop beta functions of this model read:

β(1)g = −11

2
g3 , β(1)y =

11

4
y3 − 33

4
g2 y ,

β
(1)
λ = 9 g4 − 9 g2 λ− 20 y4 + 6 y2 λ+ 3λ2 . (3.26)

So beta functions of ratios ȳ ≡ y/g and λ̄ ≡ λ/g2 are

β
(1)
ȳ =

11

4
g2 ȳ

(
ȳ2 − 1

)
β
(1)

λ̄
= g2

(
3 λ̄2 + 2 λ̄+ 6 λ̄ ȳ2 − 20 ȳ4 + 9

)
(3.27)

which exhibit the following fixed-line:

|ȳ| = λ̄ = 1 (3.28)

It can be readily checked that this fixed line is an IR stable. The RG evolution is shown

on the left of Fig. 3.5.

Equivalently, beta functions of the differences ȳ ≡ y − g and λ̄ ≡ λ− g2 are

β
(1)
ȳ =

11

4
ȳ2(3 g + ȳ)

β
(1)

λ̄
=3 λ̄ (g2 + 4 g ȳ + 2 ȳ2 + λ̄2)− 2 ȳ (34 g3 + 57 g2 ȳ + 40 g ȳ2 + 10 ȳ3) . (3.29)
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Figure 3.5: Left: IR convergence of the ratios of coupling constants of Lagrangian (3.25).

Right: Running for both λ̄ = λ − g2 and ȳ = y − g along the perturbative range. The

coupling λ̄ starts to grow only in the perturbatively unreliable zone, denoted by the shaded

area.

It follows that the values ỹ = λ̄ = 0 are zeros of the betas. Notice that the determinant of

the matrix

Mij :=
dβ

(1)
gi

dgj
with gi = (ȳ, λ̄) (3.30)

is zero on that fixed point. Therefore, at this level this point is not attractive, nor repulsive.

The behavior of these couplings is on the right of Fig. 3.5. By the way, this is strongly

dependent on the initial conditions for the renormalization group equations, in contrast

with what happens for the ratios discussed above.

Using the Fierz identities for the Pauli matrices, Lagrangian (3.25) can be rewritten as

L = − λ̄ g
2

8
(ϕ†τaϕ)2 − ȳ g√

2

(
ϕ† τa ψ χa + h.c.

)
, (3.31)

which shows that in the limit (3.28), i.e. y = g, λ = g2, the theory tends to (on-shell)

N = 1 supersymmetric SU(2) gauge theory of a vector supermultiplet (Aaµ, χa) and chiral

supermultiplet (ϕ, ψ) interacting via supergauge interactions with a coupling constant g.

Let now us generalize what discussed above by considering a model with a pair of doublets

(ϕi, ψi), i = 1, 2. The Yukawa couplings, without losing generality, can be taken diagonal

− y1√
2
ϕ†1 τ

a ψ1 χ
a − y2√

2
ϕ†2 τ

a ψ2 χ
a + h.c. (3.32)
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with constants y1,2 being real and positive.

The most general scalar potential reads

V(ϕ1, ϕ2) =
λ1
8

(ϕ†1ϕ1)
2 +

λ2
8

(ϕ†2ϕ2)
2 − λ3

4
(ϕ†1ϕ1)(ϕ

†
2ϕ2) +

λ4
2

(ϕ†1ϕ2)(ϕ
†
2ϕ1) (3.33)

+
1

4

[
λ5 (ϕ

†
1ϕ2)

2 + λ6 (ϕ
†
1ϕ1)(ϕ

†
1ϕ2) + λ7 (ϕ

†
2ϕ2)(ϕ

†
2ϕ1) + h.c.

]
(3.34)

The constant λ5 can be taken real; moreover, for the sake of simplicity, we can impose

a discrete sign change symmetry ϕ1,2 ↔ −ϕ1,2 together with the exchange symmetry

ϕ1 ↔ ϕ2, to set λ1 = λ2 = λ, λ6 = λ7 = 0 and y1 = y2 = y in the previous Lagrangians.

These further assumptions will not affect our considerations.

One-loop beta functions are

β(1)g = −5 g3 (3.35)

β(1)y = −33

4
g2 y +

13

4
y3 (3.36)

and

β
(1)
λ =9 g4 − 9 g2 λ− 20 y4 + 6 y2 λ+ 3λ2 + λ23 − 2λ3 λ4 + 2λ24 + 2λ25 (3.37)

β
(1)
λ3

=− 9 g4 − 9 g2 λ3 + 4 y4 + 6 y2 λ3 − λ23 + λ (3λ3 − 2λ4)− 2λ24 − 2λ25 (3.38)

β
(1)
λ4

=− 9 g2 λ4 − 8 y4 + 6 y2 λ4 + 2λ24 + λλ4 − 2λ3 λ4 + 4λ25 (3.39)

β
(1)
λ5

=λ5
(
6 y2 − 9 g2 + λ− 2λ3 + 6λ4

)
. (3.40)

Defining the ratios ȳ = y/g, λ̄i = λi/g
2, the relative beta functions are

β
(1)
ȳ =

13

4
g2 ȳ

(
ȳ2 − 1

)
(3.41)

β
(1)

λ̄
=g2

(
λ̄23 − 2 λ̄3 λ̄4 + 2 λ̄24 + 3 λ̄2 + λ̄− 20 ȳ4 + 6 λ̄ ȳ2 + 9

)
(3.42)

β
(1)

λ̄3
=g2

(
−λ̄23 + 3 λ̄3 λ̄+ λ̄3 − 2 λ̄4 (λ̄4 + λ̄) + 4 ȳ4 + 6 λ̄3 ȳ

2 − 9
)

(3.43)

β
(1)

λ̄4
=g2

(
λ̄4 (−2 λ̄3 + 2 λ̄4 + λ̄+ 1)− 8 ȳ4 + 6 λ̄4 ȳ

2
)
, (3.44)

which are null for ȳ = λ̄i = 1. The derivatives of (βȳ, βλ̄, βλ̄3 , βλ̄4) with respect of

(ȳ, λ̄, λ̄3, λ̄4) at the fixed point reads
13 g2/2 0 0 0

−68 g2 13 g2 0 2 g2

28 g2 g2 8 g2 −6 g2

−20 g2 g2 −2 g2 10 g2

 , (3.45)

52



y/g λ/g2 λ3/g2 λ4/g2

0 2 4 6 8 10

0.2

0.5

1

2

t

g λ
—
= λ-g2 λ

—
3= λ3-g2

λ
—
4= λ4-g2 y

—
=y-g

0.5 1 5 10

0.001

0.01

0.1

1

t

Figure 3.6: Left: Running for the ratios of coupling constants of Lagrangian (3.33). Right:

Running for the differences. The shaded area denotes the perturbatively unreliable zone.

which has positive determinant, meaning that the fixed point is IR attractive.

We show in Fig. 3.6 (on the left) the running for the ratios. Moreover, in complete

analogy with the discussion on the model with less coupling in (3.25), we also plot the

differences y − g, λi − g2 (i = 1, 2, 3, 4) in Fig. 3.6 (on the right).

U(1) gauge model

As anticipated in the beginning of this subsection, the case of an abelian gauge theory

does not share with the Yang-Mills case the feature of having an attractive fixed point,

corresponding to an enhanced supersymmetry. In what follows, we explicitly show this

point.

Consider a U(1) gauge-invariant theory with a pair of two-component fermions ψ1 and ψ2,

a pair of scalar fields ϕ1 and ϕ2 which carry U(1) charges qψ1 = qϕ1 = −qψ2 = −qϕ2 = 1

and a zero-charge two-component fermion ξ. The interaction Lagrangian of the model

reads:

L =−
(
λ1
2
|ϕ1|4 +

λ2
2
|ϕ2|4 + λ3|ϕ1|2|ϕ2|2

)
−
√
2 (y1 ξ ψ1 ϕ

∗
1 + y2 ξ ψ2 ϕ

∗
2)

+ gauge interaction terms . (3.46)
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The one-loop beta functions for this model are:

β(1)g =2 g3 (3.47)

β(1)y1 = y1
(
−3 g2 + 4 y21 + y22

)
(3.48)

β(1)y2 = y2
(
−3 g2 + y21 + 4 y22

)
(3.49)

β
(1)
λ1

=2
(
6 g4 − 6 g2 λ1 + 5λ21 + λ23 − 8 y41 + 4λ1 y

2
1

)
(3.50)

β
(1)
λ2

=2
(
6 g4 − 6 g2 λ2 + 5λ22 + λ23 − 8 y42 + 4λ2 y

2
2

)
(3.51)

β
(1)
λ3

=4
(
3 g4 − 4 y21 y

2
2

)
+ 4λ3

(
−3 g2 + λ1 + λ2 + y21 + y22

)
+ 4λ23 (3.52)

We focus on the running of ratios of couplings: ȳ1 = y1/g, ȳ2 = y2/g, λ̄1 = λ1/g
2,

λ̄2 = λ2/g
2, λ̄3 = λ3/g

2, whose beta functions read

β
(1)
ȳ1 = g2 ȳ1

(
4 ȳ21 + ȳ22 − 5

)
(3.53)

β
(1)
ȳ2 = g2 ȳ2

(
ȳ21 + 4 ȳ22 − 5

)
(3.54)

β
(1)

λ̄1
=2 g2

(
5 λ̄21 − 8 λ̄1 + λ̄23 − 8 ȳ41 + 4 λ̄1 ȳ

2
1 + 6

)
(3.55)

β
(1)

λ̄2
=2 g2

(
5 λ̄22 − 8 λ̄2 + λ̄23 − 8 ȳ42 + 4 λ̄2 ȳ

2
2 + 6

)
(3.56)

β
(1)

λ̄3
=4 g2

(
λ̄23 + ȳ21

(
λ̄3 − 4 ȳ22

)
+ λ̄3

(
λ̄1 + λ̄2 + ȳ22 − 4

)
+ 3
)

(3.57)

The possible zeros are

|ȳ1| = |ȳ2| = 1 , λ̄1 = λ̄2 = |λ̄3| = 1 (3.58)

|ȳ1| = |ȳ2| = 1 , λ̄1 = λ̄2 =
7

15
, λ̄3 =

5

3
(3.59)

Consider now the matrix of the derivatives

Mij :=
dβ

(1)
gi

dgj
with gi = (ȳ1, ȳ2, λ̄1, λ̄2, λ̄3) .

Eq. (3.59) gives negative eigenvalues for Mij (so IR unstable).

Inside Eq. (3.58), the only subcase giving positive eigenvalues for Mij (thus being a IR

stable fixed point) is

|ȳ1| = |ȳ2| = 1 , λ̄1 = λ̄2 = λ̄3 = 1 , (3.60)

while the eigenvalues have discord signs when, in the latter, one replaces λ̄3 = −1.

The latter would describe a fixed-line of the RG flow at which the theory exhibits an N = 1

on-shell supersymmetry − the U(1) gauge field and the neutral fermion ξ are combined

54



into N = 1 gauge supermultiplet which couples to two chiral supermultiplets (ϕ1, ψ1) and

(ϕ2, ψ2) via gauge interactions. However, it is neither UV attractive nor IR attractive due

to the above signs discordance. The case with concord signs represents an emergent global

U(2) symmetry.

3.4 Emergent gauge symmetry

All the known fundamental interactions rely on the principle of local gauge invariance.

This is the only known consistent and manifestly Lorentz-invariant description of quantum

fields carrying spin ≥ 1. Yet, one may entertain the possibility that gauge theories are also

emergent. This may be particularly true for gravity, for which the usual notions of locality

and smooth spacetime manifolds fail at short scales.

3.4.1 Emergent U(1) gauge theory

As a simple example of emergent local gauge theory consider a vector field Aµ coupled

to a current jµ. The theory is described by the following Lagrangian:

L =
1

2
(∂µA

µ)2 − g

2
(∂µAν)

2 − g′jµA
µ , (3.61)

where g(µ) and g′(µ) are dimensionless running parameters defined at the renormalization

scale µ. It is convenient to decompose the 4-vector potential as:

Aµ = aµ +
1

Λ
∂µϕ , (3.62)

where aµ is a divergenceless 4-vector field, ∂µaµ = 0, ϕ is a scalar field and Λ is an

arbitrary parameter of mass dimension 1, which is introduced to measure ϕ in units of Λ.

After rescaling the fields, aµ → √
g aµ and ϕ→

√
g − 1ϕ, the Lagrangian (3.61) takes the

form:

L = −1

2
(∂µaν)

2 − g′
√
g
jµ a

µ − 1

2Λ2
ϕ22 ϕ+

g′

Λ
√
g − 1

ϕ∂µj
µ . (3.63)

The first two terms alone describe the usual quantum theory of a massless Abelian gauge

field in the Lorenz gauge coupled to the current with the strength g′/
√
g. The last two

terms describe the scalar field with a fourth-order derivative kinetic term, which thus

carries two remaining degrees of freedom of the generic (non-gauge) 4-vector field. These
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degrees of freedom are removed if g = 1, the case where the theory becomes manifestly

gauge invariant.

To show that g = 1 is a fixed point of the theory, we first note that any diagram, with ϕ in

the internal legs, is finite, due to the 1/k4 behavior of the ϕ-propagator. In particular, ϕ−jµ

coupling receives only finite corrections, and hence is independent of the renormalization

scale, i.e.:
g′(µ)√
g(µ)− 1

= const. (3.64)

On the other hand, the aµjµ coupling is known to have the trivial fixed point at IR, i.e.:

g′(µ)√
g(µ)

µ→0−→ 0. (3.65)

The equations (3.64) and (3.65) then imply:

g(µ)
µ→0−→ 1 , (3.66)

that is, the theory asymptotically becomes gauge invariant in the infrared. In the gauge

invariant limit (3.66), longitudinal and ghost degrees of freedom become non-dynamical,

and ϕ in the last term of Eq. (3.63) serves as a Lagrange multiplier field, which enforces

the 4-current conservation, ∂µjµ = 0.

3.4.2 Pauli-Fierz flow in generic massive spin-2 theory

The above discussion can be applied also to emergent non-linearly realized gauge sym-

metries. As an interesting example consider the diffeomorphism invariant linearized theory

of the spin-2 field with the addition of a generic mass term:

L = −1

2
m2
(
hµνh

µν − αh2
)
+ β hµνT

µν + gauge invariant terms , (3.67)

where h = hµµ. For α = 1 this theory exhibits non-linearly realized gauge invariance

(linearized diffeomorphisms), owing to which there are five propagating degrees of freedom

of massive spin-2 field [76]. For α ̸= 1 the theory is not gauge invariant and an additional

scalar ghost degree of freedom appears in the spectrum. To see that the asymmetric theory

indeed flows towards the α = 1 Pauli-Fierz theory, let us split the tensor field into the gauge

invariant transverse and traceless tensor hTT
µν and the vector field ξµ:

hµν = hTT
µν +

1

Λ
∂(µξν) . (3.68)
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The Lagrangian (3.67) then becomes:

L = −m
2

Λ2
(∂µξν)

2 +
α

2

m2

Λ2
(∂µξ

µ)2 − β

Λ
ξν ∂µT

µν + gauge invariant terms .

The part of this Lagrangian involving the vector field ξµ is identical to the one in Eq.

(3.61). Hence, applying the previous analysis, we conclude that the linearized massive

spin-2 theory flows towards the ghost-free Pauli-Fierz theory in IR.

3.5 Outlook

The key result of this work is the proposition according to which emergent symmetries

are directly related to RG fixed hypersurfaces in the parameter space of a priori asymmet-

ric theories. We have illustrated the proposition with many simple models with emergent

global symmetry, emergent supersymmetry, and emergent gauge symmetry. We would like

to believe that these toy models can be expanded to realistic physical theories that address

some important phenomenological problems.

The radiative stability of some measured parameters in particle physics and cosmology,

most notably of the electroweak scale (i.e. the Higgs mass) and the cosmological constant,

is believed to require certain (albeit approximate) symmetries at respective scales. The

prime candidates for such symmetries are supersymmetry and scale invariance. It would

be interesting to contemplate whether the relevant symmetries that ensure the radiative

stability of these parameters are emergent rather than a fundamental feature of the theory.

Emergent symmetries could potentially provide an important technical tool for address-

ing physical problems beyond the perturbative level. For example, several aspects of the

dynamics in the strongly coupled regime can be understood within supersymmetric theo-

ries, while the phenomenologically relevant theory, Quantum Chromodynamics, does not

expose such symmetry at the fundamental level. Would it be possible to understand the

QCD confinement via emergent symmetries in the strongly coupled regime?

Finally, one may think of the gauge symmetries themselves, and most notably the diffeo-

morphism invariance of gravity, as emergent symmetries. Needless to say, that progress in

any of these directions may result in a paradigm-changing discovery.
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Chapter 4
Natural Axion from Gauge Family

Symmetry

We develop a fermion mass model based on a gauge abelian horizontal symmetry. Once

spontaneously broken, an accidental anomalous U(1)PQ is naturally set in the theory. What

we want to show is that, without imposing anything more by hand, the corresponding axion

is also of high quality, being the full potential compatible with the experimental bounds

on the neutron electric dipole moment.

4.1 Introduction

One of the most intriguing challenge in physics beyond the Standard Model is the origin

of the fermion mass and mixing textures. A typical approach to this issue is the introduc-

tion of a family, or horizontal, symmetry, whose spontaneously breaking at very high scale

is triggered by the vacuum expectation value of some field Φ, usually called flavon. Then,

the observed mass hierarchy between the fermion generations can be reproduced via the

Froggatt-Nielsen (FN) mechanism [77, 78, 79, 80, 81], by integrating out a certain number

of heavy vector-like fields, of mass scale M , named messengers; hierarchical pattern will

be explained by suppressions of the form (⟨Φ⟩/M)n, where n depends on the value of the

horizontal charges of the fields. As a minimal extension of the MSSM able to generate

a phenomenologically viable Yukawa textures, it turns out that the simplest U(1) family

group does the job, although it would be required to be anomalous [82, 83, 84, 85].
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We consider here the possibility to have an abelian U(1) horizontal symmetry, which is

gauge; this implies that, by consistency, we have to introduce 2 independent flavon fields,

whose vevs ratio will be used as expansion parameters instead of the old ⟨Φ⟩/M . In this

way the cutoff mass scale becomes dynamical, and can be chosen not so far with respect

to the other, avoiding so an eventual extra hierarchy problem; moreover, the gauge nature

of the FN symmetry can be the key to evade quantum gravity corrections which explicitly

break global symmetries [86, 87, 88]. As a result, none of the 2 phases associated with the

flavons will be physical; indeed, a specific linear combination of them will propagate as a

physical degree of freedom, that is our axion, while the orthogonal one will be absorbed by

the U(1) gauge boson through an Higgs mechanism, providing it a mass term. We recall

that, on the contrary of global symmetries, gauge symmetries cannot be explicitly broken,

none anomalous; one can see that the MSSM spectrum induces gauge anomalies when

charged under an anomalous U(1) symmetry in the context of string compactifications.

This model was widely used in the literature, where the flavon field get its vacuum expec-

tation value from anomalous Fayet-Iliopoulos D-term, which should be close to reduced

Planck/String scale [82, 89, 83, 84, 90, 91, 92], so that we need an extra fermionic spec-

trum or a Green-Schwartz (GS) mechanism in order to make it consistent [93]. One way

to proceed is to add chiral spectator fermions at the family symmetry breaking scale; as a

result, we do not need to introduce heavy vector-like fields to generate flavour hierarchies,

since the ones which take care of anomalies, if chiral under family symmetry, are sufficient.

We will discuss the case of an anomaly free U(1) symmetry, by introducing two scalars,

σ anf Φ, where one of the vacuum expectation values defines the cutoff scale of the FN

operators, which can be lower than Planck scale; in this case the expansion parameter will

be of the form ⟨σ⟩/⟨Φ⟩.

4.2 Two Scalars Model

In this section we investigate the scalar sector containing the flavon fields and then we

show how to reproduce the observed mass hierarchy between the families by using these

extra scalars and something else.
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4.2.1 The flavon sector

Let us introduce 2 scalar fields σ and Φ, which are both charged under the horizontal

U(1) symmetry with charges q and Q respectively. Let us also assume that both these

fields are singlets under SU(5).

The horizontal symmetry will break after both σ and Φ acquire a non zero vacuum expec-

tation value, therefore we can write

σ =
v1√
2
ei φ1/v1 , Φ =

v2√
2
ei φ2/v2 (4.1)

with v1/v2 ≡ ε ∼ 1/20, which will be the expansion parameter we use to well reproduce

the mass hierarchy between the fermion families. Moreover, it will turn out that only a

particular combination of the phases φ1 and φ2 can propagate as a physical axion, while

the orthogonal combination will have a vanishing kinetic term. In order to see this, let us

consider that, under the gauge U(1) symmetry, the 2 phases transform according with

φ1

v1
→ φ1

v1
+ α(x) q,

φ2

v2
→ φ2

v2
+ α(x)Q (4.2)

with α(x) gauge parameter. We then can eliminate, let’s say, φ2 by fixing a gauge in which

α = −φ2/Qv2; in this case the kinetic term has the form

Lkin = |∂µσ|2 + |∂µΦ|2 (4.3)

can be diagonalized by using an orthogonal matrix to get

|∂µ σ|2 =
1

2 cos2 θ
∂µ φ̃1 ∂

µ φ̃1 (4.4)

where

φ̃1 = cos θ φ1 + sin θ φ2 (4.5)

is the physical axion, while

sin2 θ =
q2 v21

q2 v21 +Q2 v22
, cos2 θ =

Q2 v22
q2 v21 +Q2 v22

(4.6)

The orthogonal combination φ̃2 = cos θ φ2 − sin θ φ1, as said before, will not propagate,

since it is the eigenstate of the kinetic matrix corresponding to the eigenvalue zero.

A classical consequence of introducing an axion-like particle is the possible solution to the
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strong CP problem, that is, the smallness of the θ parameter (constrained by the current

bounds on the neutron electric dipole moment)

θ < 10−10 (4.7)

If we have some scalar field ϕ whose vev breaks the U(1) symmetry, then due to the non-

renormalizability of gravity we have to include in the Lagrangian higher order operators

like

λ e−i δ
ϕn

Mn−4
pl

+ h.c. (4.8)

After the spontaneous breaking of U(1), the axion potential reads

V (a) = −Λ4 cos

(
a

fa

)
+ 2λ

(
fa
Mpl

)n−4

f4a cos

(
n
a

fa
− δ

)
(4.9)

where Λ is the QCD scale, and fa is the axion decay constant, which is constrained from

astrophysical and cosmological bounds to be of order

1010 GeV < fa < 1012 GeV (4.10)

We find that, in order for θ = ⟨a⟩/fa to be consistent with (4.7), we should require n ≳ 12.

This constraint will come back when we will discuss anomalies, and it will provide an

important consistency check on the operators we can build from the flavon fields.

4.2.2 The fermion sector

Before developing the Yukawa sector for fermion masses and mixings, let us very briefly

recall how to fit the SM fields into representations of SU(5), in order to fix the notation

we will use in the following.

In the context of SU(5) the known particles fit into an anti-fundamental and an antisym-

metric representation

5
α
i =



dc1

dc2

dc3

e

−ν


i

, 10αβ, i =



0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0


i

(4.11)
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where α, β = 1, . . . , 5 are SU(5) indices, while i = 1, 2, 3 is a family index. Together with

these there are of course the 2 Higgses H ∼ 5 and H ∼ 5, which contain the SM Higgs

doublet and an heavy color triplet

5H = (T1, T2, T3, H
+, H0)t (4.12)

Since the horizontal symmetry we introduced is chiral, none of the Standard Model fermion

can get a mass term, because it would not be U(1) invariant. They can arise after the

spontaneous breaking of the horizontal symmetry, starting from an effective theory whose

Yukawa sector can be written in terms of the higher order operators

L = a
(u)
ij 10i ·10j ·H ·

(σ
Φ

)n(u)
ij

+a
(d)
ij 5i ·10j ·H ·

(σ
Φ

)n(d)
ij

+
a
(ν)
ij

Λ
5i ·5j ·H2 ·

(σ
Φ

)n(ν)
ij (4.13)

with i, j = 1, 2, 3 family indices and aij order one constants. The exponents nij depend on

the horizontal charges of the fermions, which are generation dependent, resulting in a not

diagonal coupling between the axion and the Standard Model fermions.

With our convention on the vacuum expectation values of the flavon fields, we observe that

the mass hierarchy can be reproduced by effective Yukawa couplings of the form

Yu ∝


ε4 ε3 ε2

ε3 ε2 ε

ε2 ε 1

 , Yd ∝


ε3 ε3 ε3

ε2 ε2 ε2

ε ε ε

 (4.14)

which provide yt : yc : yu ≃ 1 : ε2 : ε4 and yb : ys : yd ≃ 1 : ε : ε2. Indeed, (4.14) fix the

values of the exponents in (4.13).

Those mass terms arise in the UV complete theory from integrating out some heavy

fermions, analogous to the Froggatt-Nielsen messengers; however, in contrast with the

original FN mechanism, in this case these heavy fermions are not vector-like under the

U(1) symmetry. This is due to the fact that in the former case we would have an ex-

pansion term of the form (σ/M)n, with M being the mass scale of the integrated out FN

messengers, while in our model this scale is replaced by a second flavon field, which couples

to the heavy states and provides a mass term after the horizontal symmetry breaking. We

find that the number of heavy families needed for the most general treatment is 4, which

we denote as (5 + 5)k and (10 + 10)k, with k = A,B,C,D family index. Below we show

some examples of diagrams in which these heavy messengers are involved.
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103

H

103

σ

103

Φ

H (H)

53 (102)
10A 10A

H (H)

103

Φ

σ

52,3 (102)
5A (10B) 5A (10B)

Invariance under U(1) of all the possible interactions determines the value of the horizontal

charges of the SM fermions and flavons, as well as those of the heavy messengers; our results

are summarized in the following tables:

Field H H σ Φ 101 102 103 51 52 53

U(1) charge 0 0 q Q 2 (Q− q) Q− q 0 Q− q Q− q Q− q

Field 10A 10A 10B 10B 10C 10C 10D 10D

U(1) charge q −Q −q 0 −Q Q− q q − 2Q 2 (q −Q) Q− 2 q

Field 5A 5A 5B 5B 5C 5C 5D 5D

U(1) charge −Q 0 −q q −Q Q− 2 q 2 (q −Q) q − 2Q Q− q

In the UV complete theory the heavy fermions couple to the SM fields and to themselves
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via the following Lagrangian

Lheavy = 10A 10AΦ+ 10B 10B Φ+ 10C 10C Φ+ 10D 10D Φ+ 5A 5AΦ+ 5B 5B Φ

+ 5C 5C Φ+ 5D 5D Φ+ 10A 103 σ + 10B 102 σ + 51 5A σ + 52 5A σ + 53 5A σ

+ 10B 10A σ + 10A 10D σ + 10C 10B σ + 10C 101 σ + 5B 5A σ + 5A 5D σ

+ 51 5D Φ+ 52 5D Φ+ 53 5D Φ+ 5C 5B σ + 10A 102H + 10B 10BH + 103 10BH

+ 10D 101H + 10C 10AH + 51 10AH + 52 10AH + 53 10AH + 5A 103H + 5B 102H

+ 5A 10BH + 5D 10AH + 5C 101H + 5B 10C H + 10B 103Φ+ 10C 102Φ

(4.15)

with order 1 constants understood in front of each term. Solving the algebraic equations

of motion for the heavy fields leads to the form (4.13).

Let us come back briefly to the last term of (4.13) to discuss neutrino masses. In this

lepton number violating term we can consider Λ as a singlet of U(1) to get the following

structure in ε for the Yukawa matrix

Yν ∝


ε2 ε2 ε2

ε2 ε2 ε2

ε2 ε2 ε2

 (4.16)

where we adopted a democratic approach since all the 5’s have the same horizontal charge.

4.3 Anomalies

Due to the fact that the horizontal symmetry we have introduced is also a gauge

symmetry, we must require for it to be anomaly free. Therefore we have to look at triangle

diagrams of the form
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where at each vertex there could be either SU(5) or U(1) gauge bosons. Anomaly cancel-

lation can be viewed as a requirement for vanishing d symbols

dabc = Tr
(
T aR {T bR, T cR}

)
= 0 (4.17)

where T aR are the generators of the group in some representation R. It is well known that

the SU(5)3 anomaly cancels, since although for 5 and 10 representations separately we

have a non zero anomaly coefficient, there exist the key result

A(5) = −A(10) (4.18)

which makes the total anomaly vanishing. So we have to look at mixed SU(5) − U(1)

anomalies, as well as the cubic U(1) one.

Of course, as for any SU(N) group, the mixed SU(N) − U(1)2 anomaly always cancels,

due to the tracelessness nature of the generators of SU(N), so we are left with U(1)3 and

SU(5)2 − U(1) anomalies. By imposing that these vanish we will get important relations

between the horizontal charges q and Q, as we will see.

4.3.1 U(1)3 anomaly

The cancellation of this anomaly is equivalent to require that∑
i

dim (Ri) · q3(Ri) = 0 (4.19)

for each representation Ri with horizontal charge q(Ri); the sum extends of course over

all the light 5 and 10, as well as over the heavy messengers. If we only look at the light

degrees of freedom we get a contribution of 140 (Q− q)3; in order to cancel that anomaly

one could for sure think about introducing a certain number of extra fermions which must

be SU(5) singlets, in order to balance the contribution coming from the heavy messengers.

Alternatively, and more elegantly, one can avoid this artifact and think about an hidden

mirror sector [94, 95, 96, 97, 98], originally introduced in order to restore parity as a

fundamental symmetry. In this context, for our particles being left handed (as described

within the Standard Model) mirror sector is described by exactly the same physics for

right handed particles, i.e. another copy of the Standard Model; if we denote with G the

SM gauge group (or whatever extension of it like SU(5), SO(10) and so on) then the full

theory will be described by the identical gauge factors G × G′ with the identical particle
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contents, where the prime refers to mirror sector [99, 100]. Moreover, a discrete interchange

symmetry between corresponding fields in the 2 sectors, so called mirror parity, implies

that both particle sectors are described by the same Lagrangians, as well as all coupling

constants have the same pattern, so that they have the same microphysics. In our case

the hidden sector will have its own SU(5)′, that is also anomaly free, and fermions will

have exactly opposite horizontal charges with respect to the ours, simply by mirror parity;

this automatically account for the U(1)3 anomaly cancellation. Also, in the mirror world

hypothesis, the mirror baryon component emerges as a possible dark matter candidate,

with specific cosmological implications [101, 102, 103, 104, 105, 106, 107]. For example,

this hypothesis will introduce 2 new scales in the structure formation scenario, that are

the Jeans scale of the mirror photon-baryon fluid and the Silk damping scale of mirror

baryons [108, 109]: perturbations in the mirror fluid cannot grow before mirror photon

decoupling, and if this occurs after the matter-radiation equality epoch, if mirror baryons

are dark matter then one expects to see less structures on small scales with respect to the

standard CDM scenario.

4.3.2 SU(5)2 − U(1) anomaly

The relation between the anomaly coefficients of 5 and 10 can be derived in this case

in a quick way, by considering the symmetry breaking channel SO(10) → SU(5)×U(1)X ,

where X is some abelian charge which is somehow related to B−L, with assignments (see

[110, 111, 112] for more details)

16 =1 (5) + 5 (−3) + 10 (1)

10 =5 (−2) + 5 (2)
(4.20)

One can show that indeed this is anomaly free, so that the 5 and 10 anomaly coefficients

are related by

A(10) = 3A(5) (4.21)

so that we have to require that

3
∑
i

q(10i, 10i) +
∑
i

q(5i, 5i) = 0 (4.22)

If we account for all the light fields and the set of heavy messengers, then we get

Q = −13

3
q (4.23)
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This consistency condition can be used in the study of terms like (4.8) in our model; that

is the cross term
σnΦm

Mn+m−4
pl

(4.24)

which is U(1) invariant only if n q +mQ = 0, and by using (4.23) we get

n

m
= −Q

q
=

13

3
(4.25)

Being all integer numbers, anomaly cancellation implies that this kind of operator will be

at least of order 16, and following the discussion made in the previous section this will not

ruin the constraint (4.7).

4.4 Gauge coupling unification revised

In this section we briefly review the well known calculation for the gauge coupling

unification in the Standard Model and in the MSSM; then we include our full set of heavy

FN messengers above the axion scale to see what we get. The main idea is that the

introduction of such heavy fields has not to break the asymptotic freedom of QCD, so that

we should guarantee that the SU(3) gauge coupling will not have a Landau pole before

the Grand Unification scale.

If we denote the gauge couplings as gi, i = 1, 2, 3, we can write the renormalization group

equations for the parameters αi = g2i /4π as

d

dt
αi(t) =

B
(1)
i

2π
α2
i (t) (4.26)

with t = ln(E/µ) and µ renormalization scale. The coefficients B(1)
i for U(1), SU(2) and

SU(3) respectively are given by (see Chapter 2)

B
(1)
i =

(
4

3
Nf +

1

10
NH ,

4

3
Nf +

1

6
NH − 22

3
,
4

3
Nf − 11

)
(4.27)

with Nf families and NH Higgs doublets. Solutions to (4.26) can be written as

αi(E) =
αi(µ)

1 +
B

(1)
i
2π αi(µ) ln

(
E
µ

) (4.28)

We deeply discussed this stuff in Chapter 2; in Fig. 4.1 we recall the standard running

for SM and MSSM, respectively.

67



α1
-1 α2

-1 α3
-1

105 108 1011 1014 1017
E [GeV]

20

30

40

50

60

α1
-1 α2

-1 α3
-1

105 108 1011 1014 1017
E [GeV]

20

30

40

50

60

Figure 4.1: One Loop running for inverse gauge couplings. Left: Standard Model. Right:

Minimal Supersymmetric Standard Model.

Now we can move on our model with the full set of FN messengers. These heavy species

become relevant above the family symmetry breaking scale v2 ∼ 1012 GeV. From the

knowledge of the family symmetry breaking scale, one can obtain the PQ symmetry break-

ing scale v1, which in turn is related to the axion decay constant fa by the color anomaly

factor [47]. In our case, v1/v2 ∼ 20, while in order to get the axion decay constant we have

to divide the PQ scale by the color anomaly factor, which we will see is of order 10; this

means we are considering models with fa ≳ 1010 GeV.

Due to the extra degrees of freedom, from that scale the coefficients (4.27) will change

with respect to the known results we gave in Chapter 2 since the number of Dirac fermions

changes; what we get is

B
(1)
i, SM =

(
443

30
,
15

2
,
11

3

)
(4.29)

and

B
(1)
i,MSSM =

(
113

5
, 17, 13

)
(4.30)

Although we find a similar value for the estimate of the GUT scale, in this scenario the

supersymmetric model features a breakdown of the asymptotic freedom of QCD, unless the

axion constant becomes unnaturally big, while for the non supersymmetric one we have a

regular behavior of α3. We show our results in Fig. 4.2.

As we can see, all the gauge couplings would blow up before reaching the GUT scale; this

is due to the fact that maybe we have introduced too much heavy families to approach the

mass hierarchy problem, and it could be that the complete set of messengers we adopted

is not the minimal one we need. We explore this possibility in the next section.
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Figure 4.2: Gauge coupling running with heavy messengers contribution. Left: Standard

Model running. Right: Minimal Supersymmetric Standard Model. In both cases the family

symmetry scale is set to v2 ≃ 1012 GeV.

4.5 Can we use less messengers?

It turns out that, despite the full general UV theory (4.15), we could have achieved our

goal with the introduction of only 3 (10 + 10) + 2 (5 + 5). This is the very minimal set of

FN messengers we need. The main differences in our discussion when less messengers are

considered regard the anomalies cancellation and the gauge coupling unification; indeed,

due to the different number of fermions participating in the theory, both (4.23) and the beta

functions will change. We should check that also in this case the consistency conditions

we put from the beginning will hold.

4.5.1 Anomalies

With the new set of messengers, of course the cubic U(1) anomaly will always cancel

for the exact same reasons we gave before. What we have to do is simply cancel the mixed

SU(5)2 − U(1) anomaly, by using (4.22) with the new fermion content. That equation

provides
Q

q
=

12

12− 3n10 − n5
= 12 (4.31)

where 12 is the contribution in anomaly of the SM fermions, and n10 and n5 are the number

of heavy messengers in representations 10 and 5 respectively. This has an important

69



α1
-1 α2

-1 α3
-1

105 108 1011 1014 1017
E [GeV]

20

30

40

50

60

α1
-1 α2

-1 α3
-1

105 108 1011 1014 1017
E [GeV]

10

20

30

40

50

60

Figure 4.3: Gauge coupling running with heavy messengers contribution in the minimal sce-

nario. Left: Standard Model running. Right: Minimal Supersymmetric Standard Model.

In both cases the family symmetry scale is set to v2 ≃ 1012 GeV.

implication: the first higher order cross term operator we could write will be

L = λ
σ12Φ†

M9
pl

+ h.c. (4.32)

which has enough quality in order to be compatible with (4.7).

4.5.2 Gauge coupling unification

Of course, also the running of the gauge coupling will change, since we now have

essentially half heavy Dirac fermions with respect to before. The new values of the beta

function coefficients are

B
(1)
i, SM =

(
343

30
,
25

6
,
1

3

)
(4.33)

and

B
(1)
i,MSSM =

(
88

5
, 12, 8

)
(4.34)

In Fig. 4.3 we show the new running of the gauge couplings. We see that in this case we

are able to respect the asymptotic freedom of QCD, and also prevent whatever Landau

pole for the gauge couplings before reaching the GUT scale; all this by taking a very

reasonable value for the axion constant, while for the previous case we had problems with

the supersymmetric theory unless a tuning for fa > 1012 GeV, a little bit in constrast with

the observational constraints (4.10).

This discussion leads us to prefer this minimal scenario, instead of a full general UV theory.
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Conclusions

Interesting aspects of physics beyond the Standard Model have been explored. We

saw how the Grand Unified picture of the fundamental interactions is strongly linked to

Supersymmetry, and in particular how the scale of SUSY breaking plays a crucial role;

in this work I have only considered the possibility that the electroweak sector and the

strong sector may have different thresholds, based on an argument concerning the running

of gaugino masses, showing that at TeV scale the gluino mass parameter is slightly higher

than the other two. Taking this difference into account allows for a surprisingly high

quality unification for the gauge couplings. Of course this picture can be further improved:

for example, here all the supersymmetric partners have been considered to have almost

the same mass, resulting in a unique threshold for each coupling. One could consider the

contribution of each superpartner separately in the calculation of all the beta functions

in order to make smoother and smoother the behavior of the inverse couplings shown in

Chapter 2. Another improvement can be done by considering low scale fragments from

the spontaneous breaking of the Grand Unification group, similarly to what happened

at the end of Chapter 4 in the case of the gauge horizontal symmetry; in these cases

some heavy fermions will give a contribution to the beta function, resulting in a radical

change of the gauge coupling running, and also in this case one can consider this ’heavy

fermions threshold’ as unique or not. Phenomenological observations such as proton decay

and neutrino masses can help to give constraints on these intermediate scales in order to

protect the Grand Unification, that is, to allow that the couplings meet before one of them

blows up, see for example Fig. 4.2.

Two Loop effects are expected to be more and more suppressed with respect to the ones I
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discussed.

The role of accidental, or emergent symmetries discussed in Chapter 3 was at the origin

of what I developed in the last chapter, that is, a model for fermion masses and mixing

based on an abelian gauge horizontal symmetry; embedded in a Grand Unified context, the

spontaneous breaking of that family symmetry provides a generation dependent Yukawa

couplings for the low energy theory via

SU(5)× U(1)H → SU(5) → SU(3)× SU(2)× U(1)

The aim of that work was to address the family problem as well as the strong CP problem

by a ’natural axion’ solution, that is, a mechanism similar to the Peccei-Quinn one where

the axion emerges accidentally, without imposing any ad hoc global symmetry. In the

case I discussed the axion emerges as a pseudo Goldstone boson from the spontaneously

breaking of a gauge symmetry, which has fundamental character. This was possible since

the abelian horizontal symmetry, if local, need for 2 independent flavon fields in order to

become non trivial, in order that a particular combination of their phases emerge as an

axion; also here phenomenological observations help us to constrain some parameter of the

model, in particular in the axion potential, which will have to be consistent with the upper

bound on the θ parameter

θ ≲ 10−10

The local nature of this symmetry moreover implies that all the anomalies must cancel,

and this reflects again on the parameters of the axion potential; what we saw in Chapter 4

is that the constraints arising from anomaly cancellation naturally satisfied the ones from

neutron electric dipole moment observation, that is, they are naturally consistent with an

axion solution to the strong CP problem. This is usually refereed to as an high quality

axion.

Of course also this field can be explored more and more by considering different horizontal

groups, whose specific symmetry breaking pattern will have implications on the flavour

violating coupling of the resulting axion, as well as on the picture of Grand Unification

depending on all the intermediate scales are treated in the modified beta functions.
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Appendix A
Poincaré group and Weyl spinors

Poincaré group corresponds to the symmetries of special relativity, which includes

Lorentz transformations as well as spacetime translations; it acts on the spacetime co-

ordinates as

xµ → Λµν x
ν + aµ (A.1)

where the Lorentz transformation Λ ∈ SO(3, 1) leaves the metric invariant

Λ α
µ ηαβ Λ

β
ν = ηµν (A.2)

Generators of the Poincaré group are the Lorentz generators Mµν together with the 4

momentum Pα; they satisfy the Poincaré algebra

[Pµ, P ν ] = 0

[Mµν , Pα] = i (Pµ ηνα − P ν ηµα)

[Mµν ,Mαβ] = i (Mµβ ηνα +Mνα ηµβ −Mµα ηνβ −Mνβ ηµα)

(A.3)

Moreover, we locally have a correspondence

SO(3, 1) ≃ SU(2)⊗ SU(2) (A.4)

The generators of spatial rotations Ji and Lorentz boosts Ki can be expressed as

Ji =
1

2
ϵijkMjk, Ki =M0i (A.5)

which obey

[Ji, Jj ] = i ϵijk Jk

[Ji,Kj ] = i ϵijkKk

[Ki,Kj ] = −i ϵijk Jk

(A.6)
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We can now define the linear combinations

J±
i =

1

2
(Ji ± iKi) (A.7)

which satisfy

[J+
i , J

+
j ] = i ϵijk J

+
k

[J−
i , J

−
j ] = i ϵijk J

−
k

[J+
i , J

−
j ] = 0

(A.8)

Thus, we have shown that the Lie algebra for the Lorentz group has 2 commuting SU(2)

subalgebras; representations of su(2)⊕ su(2) will determine representations of the Lorentz

group.

On the other hand, there is the homeomorphism

SO(3, 1) ≃ SL(2,C) (A.9)

whose basic representations are the fundamental one ψα, known as left handed Weyl spinor,

and the conjugate one χ̄α̇, known as right handed Weyl spinor.

We can define the generators of SL(2,C) starting from σµ = (1, σ⃗) and σ̄µ = (1,−σ⃗) as

(σµν) β
α =

i

4
(σµ σ̄ν − σν σ̄µ) β

α

(σ̄µν)α̇
β̇
=
i

4
(σ̄µ σν − σ̄ν σµ)α̇

β̇

(A.10)

which satisfy the Lorentz algebra. Under a finite Lorentz transformation with parameters

ωµν , left handed and right handed spinors tranform respectively as

ψα → exp
(
− i

2
ωµν σ

µν

) β

α

ψβ

χ̄α̇ → exp
(
− i

2
ωµν σ̄

µν

)α̇
β̇

χ̄β̇
(A.11)

We define the product of 2 Weyl spinors as

χψ = χα ψα = ϵαβ χβ ψα = −χα ψα (A.12)

χ̄ ψ̄ = χ̄α̇ ψ̄
α̇ = ϵα̇β̇ χ̄

β̇ ψ̄α̇ = −χ̄α̇ ψ̄α̇ (A.13)

In particular

ψ ψ = ψα ψα = ϵαβ ψβψα = ψ2 ψ1 − ψ1 ψ2 = 2ψ2 ψ1 (A.14)

being the components ψα anticommuting Grassmann numbers.
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Appendix B
Basics of Supersymmetry

B.1 Supersymmetry algebra

In order to have a supersymmetric extension of the Poincaré algebra, we need to intro-

duce the spinor generators Qα and Q̄α̇, in representation
(
1
2 , 0
)

and
(
0, 12
)

of the Lorentz

group, respectively1, as well as the concept of graded Lie algebra; for operators Oa of a Lie

algebra we have

OaOb − (−1)ηa ηb ObOa = i CeabOe (B.1)

where the gradings ηa take the values 0 or 1 for bosonic or fermionic operators, respectively.

We already know tha algebra for Lorentz generators and translations (A.3); in order to have

the full supersymmetry algebra we need to find the relations with the spinor generators we

introduced above. One can verify that

[Qα,M
µν ] = (σµν) β

α Qβ

[Qα, P
µ] = [Q̄α̇, Pµ] = 0

{Qα, Qβ} = 0{
Qα, Q̄β̇

}
= 2 (σµ)αβ̇ Pµ

(B.2)

The last equation in turn implies that the action of 2 supersymmetry transformations

is indeed a spacetime translation. Actually, we need also the commutator between a

supersymmetry generator and some internal generator Ti; this usually vanishes, except for
1For the sake of simplicity, we consider here only the N = 1 SUSY case. The generalization to the case

of extended supersymmetry is trivial.
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some U(1) automorphism of the supersymmetry algebra, known as R-symmetry:

Qα → exp(i λ)Qα, Q̄α̇ → exp(−i λ) Q̄α̇ (B.3)

so that, if R is a U(1) generator, then

[Qα, R] = Qα, [Q̄α̇, R] = −Q̄α̇ (B.4)

In the case of extended supersymmetry, we need to introduce additional labels A,B =

1, . . . ,N to the spinor generators; the algebra is the same of (B.2), except for{
QAα , Q̄β̇ B

}
= 2 (σµ)αβ̇ Pµ δ

A
B{

QAα , Q
B
β

}
= ϵαβ Z

AB
(B.5)

where ZAB = −ZBA are the central charges which commute with all the generators, and

they are the main new ingredient of extended supersymmetries. Moreover, they form an

abelian invariant subalgebra of internal symmetries.

B.2 Superspace and Superfields

Let us introduce a set of anticommuting Grassmann coordinates θα and θ̄α̇; supersym-

metry transformations are nothing less than translations along that directions in super-

space. We will deal with objects called superfields Φ(X) which are functions of coordinates

X in superspace and which have definite transformation properties under super Poincaré.

B.2.1 Chiral superfields

A chiral superfield Φ is defined by the property

D̄α̇Φ = 0 (B.6)

where D̄α̇ is the right handed supercovariant derivative; it is useful to introduce a chiral

coordinate yµ defined as

yµ = xµ + i θ σµ θ̄ (B.7)

so that the chiral superfield will only depend on y and θ; in the standard parametrization

Φ(y, θ) = φ(y) +
√
2 θ ψ(y) + θθ F (y) (B.8)
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where φ represents the scalar part, ψ the some spin 1/2 particle and F is an auxiliary field.

We have also used the definition

θα θβ =
1

2
ϵαβ (θθ) (B.9)

In terms of the original spacetime coordinates xµ it takes the form

Φ(x, θ, θ̄) = φ(x) +
√
2 θ ψ(x) + θθ F (x) + i θ σµ θ̄ ∂µφ(x)

− i√
2
(θθ) ∂µψ(x)σ

µ θ̄ − 1

4
(θθ) (θ̄θ̄)∂µ∂

µφ(x)
(B.10)

B.2.2 Vector superfields

A vector (or real) superfield V (x, θ, θ̄) is defined by

V † = V (B.11)

For such a superfield we can define a generalized gauge transformation

V → V − i

2
(Λ− Λ†) (B.12)

with Λ chiral superfield, in order to gauge away some of the components of V . A common

choice is the so called Wess-Zumino gauge, in which the superfield takes the form

V (x, θ, θ̄) = (θ σµ θ̄)Vµ(x) + (θθ) (θ̄λ̄(x)) + (θ̄θ̄) (θλ(x)) +
1

2
(θθ) (θ̄θ̄)D(x) (B.13)

The physical components of a vector superfield are then Vµ, corresponding to the gauge

bosons, λ and λ̄ corresponding to the gauginos and the auxiliary field D. One can also

show that in this gauge

V 2 =
1

2
(θθ) (θ̄θ̄)V µ Vµ, V n+2 = 0 for all n ≥ 1 (B.14)

Notice also that the Wess-Zumino gauge is not supersymmetric, since under supersymmetry

the new vector superfields will not be of the form (B.13). However, under a combination

of supersymmetry and generalized gauge transformation, we can end up with a vector field

in Wess-Zumino gauge.
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B.2.3 Abelian field strength superfield

For a non supersymmetric U(1) gauge theory, a complex scalar field φ coupled to a

gauge field Vµ via covariant derivative Dµ = ∂µ − i q Vµ transforms as

φ(x) → ei q α(x) φ(x), Vµ(x) → Vµ(x) + ∂µα(x) (B.15)

with charge q and local parameter α(x).

Under supersymmetry, we generalized these concepts to chiral superfields Φ and vector

superfields V . Imposing the transformation properties

Φ → exp (i qΛ)Φ, V → V − i

2
(Λ− Λ†) (B.16)

for some chiral superfield Λ, we find that the combination

Φ† e2 q V Φ (B.17)

is gauge invariant.

Without supersymmetry, the abelian field strength is usually defined as

Fµν = ∂µVν − ∂νVµ (B.18)

whose supersymmetric generalization is

Wα = −1

4
(D̄D̄)DαV (B.19)

which written in components takes the form

Wα(y, θ) = λα(y) + θαD(y) + (σµν θ)α Fµν(y)− i (θθ) (σµ)αβ̇ ∂µλ̄
β̇(y) (B.20)

B.2.4 Non abelian field strength superfield

As for the non supersymmetric case, the gauge degrees of freedom take values in the

associated Lie algebra spanned by the generators T a:

Λ = Λa T
a, V = Va T

a, [T a, T b] = i fabc T c (B.21)

Under the gauge transformation Φ → ei qΛΦ, we want to keep Φ† e2 q V Φ invariant; how-

ever, the non-commutative nature of Λ and V enforces a non linear transformation law for

the vector superfield. Indeed, since

exp (2 q V ) → exp (i qΛ†) exp (2 q V ) exp (−i qΛ) (B.22)
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it follows that

V → V − i

2
(Λ− Λ†)− i q

2
[V,Λ + Λ†] + · · · (B.23)

Of course, also the field strength superfield needs to be modified in the non abelian case.

Recall that the field strength Fµν of a non supersymmetric Yang-Mills theory transforms

as U Fµν U−1 under unitary transformations; in a similar way, we get a gauge covariant

quantity as

Wα = − 1

8 q
(D̄D̄) (exp (−2 q V )Dα exp (2 q V )) (B.24)

which transforms as

Wα → ei qΛWα e
−i qΛ (B.25)

under (B.22).

Finally, one can express that field strength in Wess-Zumino gauge explicitly as

Wa
α(y, θ) = −1

4
(D̄D̄)Dα (V

a(y, θ, θ̄) + i fabc V b(y, θ, θ̄)V c(y, θ, θ̄))

= λaα(y) + θαD
a(y) + (σµν θ)α F

a
µν(y)− i (θθ) (σµ)αβ̇ Dµλ̄

aβ̇(y)

(B.26)

where

F aµν = ∂µV
a
ν − ∂νV

a
µ + q fabc V b

µ V
c
ν

Dµλ̄
a = ∂µλ̄

a + q fabc V b
µ λ̄

c
(B.27)
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