In Model-Driven Engineering (MDE) metamodels are pivotal entities that underpin the definition of models. Similarly to any software artifact, metamodels evolve over time due to evolutionary pressure. However, whenever a metamodel is modified, related models may become invalid and adaptations are required to restore their validity. Generally, when adapting a model in response to metamodel changes, more than one migration strategy is possible. Unfortunately, inspecting all of them, which greatly overlap one with another, can be prone to errors. In this paper, we present an approach supporting the identification of variability during model migration and selection of migration alternatives by generating an intensional and thus concise representation of all migration alternatives by including also an explicit visualization of conflicting solutions.
Supporting variability exploration and resolution during model migration
DI RUSCIO, DAVIDE;IOVINO, LUDOVICO;PIERANTONIO, ALFONSO;
2016-01-01
Abstract
In Model-Driven Engineering (MDE) metamodels are pivotal entities that underpin the definition of models. Similarly to any software artifact, metamodels evolve over time due to evolutionary pressure. However, whenever a metamodel is modified, related models may become invalid and adaptations are required to restore their validity. Generally, when adapting a model in response to metamodel changes, more than one migration strategy is possible. Unfortunately, inspecting all of them, which greatly overlap one with another, can be prone to errors. In this paper, we present an approach supporting the identification of variability during model migration and selection of migration alternatives by generating an intensional and thus concise representation of all migration alternatives by including also an explicit visualization of conflicting solutions.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.