We study model one-dimensional crawlers, namely, model mechanical systems that can achieve self-propulsion by controlled shape changes of their body (extension or contraction of portions of the body), thanks to frictional interactions with a rigid substrate. We evaluate the achievable net displacement and the related energetic cost for self-propulsion by discrete crawlers (i.e., whose body is made of a discrete number of contractile or extensile segments) moving on substrates with either a Newtonian (linear) or a Bingham-type (stick-slip) rheology. Our analysis is aimed at constructing the basic building blocks towards an integrative, multi-scale description of crawling cell motility.

Discrete one-dimensional crawlers on viscous substrates: achievable net displacements and their energy cost

TATONE, Amabile;
2014-01-01

Abstract

We study model one-dimensional crawlers, namely, model mechanical systems that can achieve self-propulsion by controlled shape changes of their body (extension or contraction of portions of the body), thanks to frictional interactions with a rigid substrate. We evaluate the achievable net displacement and the related energetic cost for self-propulsion by discrete crawlers (i.e., whose body is made of a discrete number of contractile or extensile segments) moving on substrates with either a Newtonian (linear) or a Bingham-type (stick-slip) rheology. Our analysis is aimed at constructing the basic building blocks towards an integrative, multi-scale description of crawling cell motility.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/10070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact