Purpose: Our aim was to evaluate the ultrastructure of human metaphase II oocytes subjected to slow freezing and fixed after thawing at different intervals during post-thaw rehydration. Methods: Samples were studied by light and transmission electron microscopy. Results: We found that vacuolization was present in all cryopreserved oocytes, reaching a maximum in the intermediate stage of rehydration. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates decreased following thawing, particularly in the first and intermediate stages of rehydration, whereas mitochondria-vesicle (MV) complexes augmented in the same stages. At the end of rehydration, vacuoles and MV complexes both diminished and M-SER aggregates increased again. Cortical granules (CGs) were scarce in all cryopreserved oocytes, gradually diminishing as rehydration progressed. Conclusions: This study also shows that such a membrane remodeling is mainly represented by a dynamic process of transition between M-SER aggregates and MV complexes, both able of transforming into each other. Vacuoles and CG membranes may take part in the membrane recycling mechanism.

Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes

PALMERINI, MARIA GRAZIA;MACCHIARELLI, GUIDO
2016-01-01

Abstract

Purpose: Our aim was to evaluate the ultrastructure of human metaphase II oocytes subjected to slow freezing and fixed after thawing at different intervals during post-thaw rehydration. Methods: Samples were studied by light and transmission electron microscopy. Results: We found that vacuolization was present in all cryopreserved oocytes, reaching a maximum in the intermediate stage of rehydration. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates decreased following thawing, particularly in the first and intermediate stages of rehydration, whereas mitochondria-vesicle (MV) complexes augmented in the same stages. At the end of rehydration, vacuoles and MV complexes both diminished and M-SER aggregates increased again. Cortical granules (CGs) were scarce in all cryopreserved oocytes, gradually diminishing as rehydration progressed. Conclusions: This study also shows that such a membrane remodeling is mainly represented by a dynamic process of transition between M-SER aggregates and MV complexes, both able of transforming into each other. Vacuoles and CG membranes may take part in the membrane recycling mechanism.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/102992
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact