Introduction We aimed to test differences between healthy subjects and patients with respect to slow wave activity during wakefulness and sleep. Methods Fifteen patients affected by nonlesional focal epilepsy originating within temporal areas and fourteen matched controls underwent a 24-hour EEG recording. We studied the EEG power spectral density during wakefulness and sleep in delta (1-4 Hz), theta (5-7 Hz), alpha (8-11 Hz), sigma (12-15 Hz), and beta (16-20 Hz) bands. Results During sleep, patients with focal epilepsy showed higher power from delta to beta frequency bands compared with controls. The effect was widespread for alpha band and above, while localized over the affected hemisphere for delta (sleep cycle 1, P = .006; sleep cycle 2, P = .008; sleep cycle 3, P = .017). The analysis of interhemispheric differences showed that the only frequency band stronger over the affected regions was the delta band during the first 2 sleep cycles (sleep cycle 1, P = .014; sleep cycle 2, P = .002). During wakefulness, patients showed higher delta/theta activity over the affected regions compared with controls. Conclusions Patients with focal epilepsy showed a pattern of power increases characterized by a selective slow wave activity enhancement over the epileptic regions during daytime and sleep. This phenomenon was stronger and asymmetric during the first sleep cycles.

Slow Activity in Focal Epilepsy During Sleep and Wakefulness

CURCIO, GIUSEPPE;
2017-01-01

Abstract

Introduction We aimed to test differences between healthy subjects and patients with respect to slow wave activity during wakefulness and sleep. Methods Fifteen patients affected by nonlesional focal epilepsy originating within temporal areas and fourteen matched controls underwent a 24-hour EEG recording. We studied the EEG power spectral density during wakefulness and sleep in delta (1-4 Hz), theta (5-7 Hz), alpha (8-11 Hz), sigma (12-15 Hz), and beta (16-20 Hz) bands. Results During sleep, patients with focal epilepsy showed higher power from delta to beta frequency bands compared with controls. The effect was widespread for alpha band and above, while localized over the affected hemisphere for delta (sleep cycle 1, P = .006; sleep cycle 2, P = .008; sleep cycle 3, P = .017). The analysis of interhemispheric differences showed that the only frequency band stronger over the affected regions was the delta band during the first 2 sleep cycles (sleep cycle 1, P = .014; sleep cycle 2, P = .002). During wakefulness, patients showed higher delta/theta activity over the affected regions compared with controls. Conclusions Patients with focal epilepsy showed a pattern of power increases characterized by a selective slow wave activity enhancement over the epileptic regions during daytime and sleep. This phenomenon was stronger and asymmetric during the first sleep cycles.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/104011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
social impact