A detailed knowledge of the structures of the catalytic steps along the Kok-Joliot cycle of Photosystem II may help to understand the strategies adopted by this unique enzyme to achieve water oxidation. Vibrational spectroscopy has probed in the last decades the intermediate states of the catalytic cycle, although the interpretation of the data turned out to be often problematic. In the present work we use QM/MM molecular dynamics on the S2 state to obtain the vibrational density of states at room temperature. To help the interpretation of the computational and experimental data we propose a decomposition of the Mn4CaO5 moiety into five separate parts, composed by “diamond” motifs involving four atoms. The spectral signatures arising from this analysis can be easily interpreted to assign experimentally known bands to specific molecular motions. In particular, we focused in the low frequency region of the vibrational spectrum of the S2 state. We can therefore identify the observed bands around 600–620 cm− 1 as characteristic for the stretching vibrations involving Mn1-O1-Mn2 or Mn3-O5 moieties.

Vibrational fingerprints of the Mn4CaO5 cluster in Photosystem II by mixed quantum-classical molecular dynamics

BOVI, DANIELE;CAPONE, MATTEO;NARZI, DANIELE;GUIDONI, Leonardo
2016-01-01

Abstract

A detailed knowledge of the structures of the catalytic steps along the Kok-Joliot cycle of Photosystem II may help to understand the strategies adopted by this unique enzyme to achieve water oxidation. Vibrational spectroscopy has probed in the last decades the intermediate states of the catalytic cycle, although the interpretation of the data turned out to be often problematic. In the present work we use QM/MM molecular dynamics on the S2 state to obtain the vibrational density of states at room temperature. To help the interpretation of the computational and experimental data we propose a decomposition of the Mn4CaO5 moiety into five separate parts, composed by “diamond” motifs involving four atoms. The spectral signatures arising from this analysis can be easily interpreted to assign experimentally known bands to specific molecular motions. In particular, we focused in the low frequency region of the vibrational spectrum of the S2 state. We can therefore identify the observed bands around 600–620 cm− 1 as characteristic for the stretching vibrations involving Mn1-O1-Mn2 or Mn3-O5 moieties.
File in questo prodotto:
File Dimensione Formato  
78_bovi_bba_16_postprint.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/106470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact