Concentrating on zero temperature quantum Monte Carlo calculations of electronic systems, we give a general description of the theory of finite size extrapolations of energies to the thermodynamic limit based on one- and two-body correlation functions. We introduce effective procedures, such as using the potential and wave function split up into long and short range functions to simplify the method, and we discuss how to treat backflow wave functions. Then we explicitly test the accuracy of our method to correct finite size errors on example hydrogen and helium many-body systems and show that the finite size bias can be drastically reduced for even small systems.

Theory of Finite Size Effects for Electronic Quantum Monte Carlo Calculations of Liquids and Solids

PIERLEONI, CARLO
2016-01-01

Abstract

Concentrating on zero temperature quantum Monte Carlo calculations of electronic systems, we give a general description of the theory of finite size extrapolations of energies to the thermodynamic limit based on one- and two-body correlation functions. We introduce effective procedures, such as using the potential and wave function split up into long and short range functions to simplify the method, and we discuss how to treat backflow wave functions. Then we explicitly test the accuracy of our method to correct finite size errors on example hydrogen and helium many-body systems and show that the finite size bias can be drastically reduced for even small systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/106484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 68
social impact