Percutaneous imaging-guided cryoablation (PICA) is a recently developed technique, which applies extreme hypothermia to destroy tumours under close imaging surveillance. It is minimally invasive, safe, repeatable, and does not interrupt or compromise other oncologic therapies. It presents several advantages over more established heat-based thermal ablation techniques (e.g. radiofrequency ablation; RFA) including intrinsic analgesic properties, superior monitoring capability on multi-modal imaging, ability to treat larger tumours, and preservation of tissue collagenous architecture. There has been a recent large increase in reports evaluating the utility of PICA in a wide range of patients and tumours, but systematic analysis of the literature is challenging due to the rapid pace of change and predominance of extensively heterogeneous level III studies. The precise onco-therapeutic role of PICA has not been established. This narrative review outlines the available evidence for PICA in a range of tumours. Current indications include curative therapy of small T1a renal tumours; curative/palliative therapy of small primary/secondary lung tumours where RFA is unsuitable; palliation of painful bone metastases; and urologic treatment of organ-confined prostate cancer. There is growing evidence to support its use for small hepatic tumours, and encouraging results have been obtained for breast tumours, extra-abdominal desmoid tumours, and management of higher-stage tumours and oligometastatic disease. However, the overall evidence base is weak, effectively restricting PICA to cases where standard therapy and RFA are unsuitable. As the technique and evidence continue to mature, the benefits of this emerging technique will hopefully become more widely available to cancer patients in the future.

Percutaneous image-guided cryoablation: current applications and results in the oncologic field

BARILE, ANTONIO;MASCIOCCHI, CARLO;
2016-01-01

Abstract

Percutaneous imaging-guided cryoablation (PICA) is a recently developed technique, which applies extreme hypothermia to destroy tumours under close imaging surveillance. It is minimally invasive, safe, repeatable, and does not interrupt or compromise other oncologic therapies. It presents several advantages over more established heat-based thermal ablation techniques (e.g. radiofrequency ablation; RFA) including intrinsic analgesic properties, superior monitoring capability on multi-modal imaging, ability to treat larger tumours, and preservation of tissue collagenous architecture. There has been a recent large increase in reports evaluating the utility of PICA in a wide range of patients and tumours, but systematic analysis of the literature is challenging due to the rapid pace of change and predominance of extensively heterogeneous level III studies. The precise onco-therapeutic role of PICA has not been established. This narrative review outlines the available evidence for PICA in a range of tumours. Current indications include curative therapy of small T1a renal tumours; curative/palliative therapy of small primary/secondary lung tumours where RFA is unsuitable; palliation of painful bone metastases; and urologic treatment of organ-confined prostate cancer. There is growing evidence to support its use for small hepatic tumours, and encouraging results have been obtained for breast tumours, extra-abdominal desmoid tumours, and management of higher-stage tumours and oligometastatic disease. However, the overall evidence base is weak, effectively restricting PICA to cases where standard therapy and RFA are unsuitable. As the technique and evidence continue to mature, the benefits of this emerging technique will hopefully become more widely available to cancer patients in the future.
File in questo prodotto:
File Dimensione Formato  
PERCUTANEOUS IMAGE-GUIDED (2016 CAZZATO)cazzato2016.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Dominio pubblico
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/107114
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 124
  • ???jsp.display-item.citation.isi??? 102
social impact