We study the effective field theory that describes the low-energy physics of self-gravitating media. The field content consists of four derivatively coupled scalar fields that can be identified with the internal comoving coordinates of the medium. Imposing SO(3) internal spatial invariance, the theory describes supersolids. Stronger symmetry requirements lead to superfluids, solids and perfect fluids, at lowest order in derivatives. In the unitary gauge, massive gravity emerges, being thus the result of a continuous medium propagating in spacetime. Our results can be used to explore systematically the effects and signatures of modifying gravity consistently at large distances. The dark sector is then described as a self-gravitating medium with dynamical and thermodynamic properties dictated by internal symmetries. These results indicate that the divide between dark energy and modified gravity, at large distance scales, is simply a gauge choice.

Massive and modified gravity as self-gravitating media

PILO, LUIGI
2016-01-01

Abstract

We study the effective field theory that describes the low-energy physics of self-gravitating media. The field content consists of four derivatively coupled scalar fields that can be identified with the internal comoving coordinates of the medium. Imposing SO(3) internal spatial invariance, the theory describes supersolids. Stronger symmetry requirements lead to superfluids, solids and perfect fluids, at lowest order in derivatives. In the unitary gauge, massive gravity emerges, being thus the result of a continuous medium propagating in spacetime. Our results can be used to explore systematically the effects and signatures of modifying gravity consistently at large distances. The dark sector is then described as a self-gravitating medium with dynamical and thermodynamic properties dictated by internal symmetries. These results indicate that the divide between dark energy and modified gravity, at large distance scales, is simply a gauge choice.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/107341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 5
social impact