We study the quantum diffusion of an electron in a quantum chain starting from an initial state localized around a given site. As the wavepacket diffuses, the probability of reconstructing the initial state on another site diminishes drastically with the distance. In order to optimize the state transmission we find that a topological quantum phase can be introduced. The effect of this phase is the reduction of wavepacket spreading together with almost coherent group propagation. In this regime, the electron has a quasi-linear dispersion and high fidelity can be achieved also over large distances in terms of lattice spacing. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimized electron propagation on a quantum chain by a topological phase
PAGANELLI, SIMONE;
2009-01-01
Abstract
We study the quantum diffusion of an electron in a quantum chain starting from an initial state localized around a given site. As the wavepacket diffuses, the probability of reconstructing the initial state on another site diminishes drastically with the distance. In order to optimize the state transmission we find that a topological quantum phase can be introduced. The effect of this phase is the reduction of wavepacket spreading together with almost coherent group propagation. In this regime, the electron has a quasi-linear dispersion and high fidelity can be achieved also over large distances in terms of lattice spacing. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.