We determine the quantum ground-state properties of ultracold bosonic atoms interacting with the mode of a high-finesse resonator. The atoms are confined by an external optical lattice, whose period is incommensurate with the cavity mode wavelength, and are driven by a transverse laser, which is resonant with the cavity mode. While for pointlike atoms photon scattering into the cavity is suppressed, for sufficiently strong lasers quantum fluctuations can support the buildup of an intracavity field, which in turn amplifies quantum fluctuations. The dynamics is described by a Bose-Hubbard model where the coefficients due to the cavity field depend on the atomic density at all lattice sites. Quantum Monte Carlo simulations and mean-field calculations show that, for large parameter regions, cavity backaction forces the atoms into clusters with a checkerboard density distribution. Here, the ground state lacks superfluidity and possesses finite compressibility, typical of a Bose glass. This system constitutes a novel setting where quantum fluctuations give rise to effects usually associated with disorder. © 2013 American Physical Society.

Bose-glass phases of ultracold atoms due to cavity backaction

PAGANELLI, SIMONE;
2013-01-01

Abstract

We determine the quantum ground-state properties of ultracold bosonic atoms interacting with the mode of a high-finesse resonator. The atoms are confined by an external optical lattice, whose period is incommensurate with the cavity mode wavelength, and are driven by a transverse laser, which is resonant with the cavity mode. While for pointlike atoms photon scattering into the cavity is suppressed, for sufficiently strong lasers quantum fluctuations can support the buildup of an intracavity field, which in turn amplifies quantum fluctuations. The dynamics is described by a Bose-Hubbard model where the coefficients due to the cavity field depend on the atomic density at all lattice sites. Quantum Monte Carlo simulations and mean-field calculations show that, for large parameter regions, cavity backaction forces the atoms into clusters with a checkerboard density distribution. Here, the ground state lacks superfluidity and possesses finite compressibility, typical of a Bose glass. This system constitutes a novel setting where quantum fluctuations give rise to effects usually associated with disorder. © 2013 American Physical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/107801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 82
social impact