In this paper, we consider a market model with prices and consumption following a jump-diffusion dynamics. In this setting, we first characterize the optimal consumption plan for an investor with recursive stochastic differential utility on the basis of his/her own beliefs, then we solve the inverse problem to find what beliefs make a given consumption plan optimal. The problem is viewed in general for a class of homogeneous recursive utility, and later we choose a logarithmic model for the utility aggregator as an explicitly computable example. When beliefs, represented via Girsanov’s theorem, get incorporated into the model, the change of measure gives rise, up to a transformation, to a backward stochastic differential equation whose generator exhibits a quadratic behavior in the Brownian component and a locally Lipschitz one in the jump component, which is solvable on the basis of some recent results.

Consumption optimization for recursive utility in a jump-diffusion model

ANTONELLI, FABIO;MANCINI, CARLO
2016-01-01

Abstract

In this paper, we consider a market model with prices and consumption following a jump-diffusion dynamics. In this setting, we first characterize the optimal consumption plan for an investor with recursive stochastic differential utility on the basis of his/her own beliefs, then we solve the inverse problem to find what beliefs make a given consumption plan optimal. The problem is viewed in general for a class of homogeneous recursive utility, and later we choose a logarithmic model for the utility aggregator as an explicitly computable example. When beliefs, represented via Girsanov’s theorem, get incorporated into the model, the change of measure gives rise, up to a transformation, to a backward stochastic differential equation whose generator exhibits a quadratic behavior in the Brownian component and a locally Lipschitz one in the jump component, which is solvable on the basis of some recent results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/107985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact