In this paper, we deal with the low Mach number limit for the system of quantum hydrodynamics, far from the vortex nucleation regime. More precisely, in the framework of a periodic domain and ill-prepared initial data we prove strong convergence of the solutions toward regular solutions of the incompressible Euler system. In particular, we will perform a detailed analysis of the time oscillations and of the relative entropy functional related to the system.
Low Mach number limit for the Quantum-Hydrodynamics system
DONATELLI, DONATELLA;MARCATI, PIERANGELO
2016-01-01
Abstract
In this paper, we deal with the low Mach number limit for the system of quantum hydrodynamics, far from the vortex nucleation regime. More precisely, in the framework of a periodic domain and ill-prepared initial data we prove strong convergence of the solutions toward regular solutions of the incompressible Euler system. In particular, we will perform a detailed analysis of the time oscillations and of the relative entropy functional related to the system.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
quantum-incompr-pubblicato.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
599.56 kB
Formato
Adobe PDF
|
599.56 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.