In this paper, we deal with the low Mach number limit for the system of quantum hydrodynamics, far from the vortex nucleation regime. More precisely, in the framework of a periodic domain and ill-prepared initial data we prove strong convergence of the solutions toward regular solutions of the incompressible Euler system. In particular, we will perform a detailed analysis of the time oscillations and of the relative entropy functional related to the system.

Low Mach number limit for the Quantum-Hydrodynamics system

DONATELLI, DONATELLA;MARCATI, PIERANGELO
2016-01-01

Abstract

In this paper, we deal with the low Mach number limit for the system of quantum hydrodynamics, far from the vortex nucleation regime. More precisely, in the framework of a periodic domain and ill-prepared initial data we prove strong convergence of the solutions toward regular solutions of the incompressible Euler system. In particular, we will perform a detailed analysis of the time oscillations and of the relative entropy functional related to the system.
File in questo prodotto:
File Dimensione Formato  
quantum-incompr-pubblicato.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 599.56 kB
Formato Adobe PDF
599.56 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/108197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact