The advanced treatment of polluted liquid streams containing traces of pharmaceutical compounds is a major issue, since more and more effluents from pharma labs and wastewaters containing the excretions of medically treated humans and animals are discharged in the conventional wastewater treatment plants without previous effective treatments. Ibuprofen is a widely used non-steroidal anti-inflammatory drug (NSAID), which explains why it is found in wastewaters so often. In this paper, the removal of IBP from simulated water streams was investigated by using a lab-scale experimental device, consisting of a batch reactor equipped with a lamp emitting monochromatic UV light at a fixed wavelength (254 nm) and various intensities. Three sets of experiments were carried out: the first to study IBP concentration as a function of time, at different volumes of treated solutions (V = 10–30 mL); the second to explore the effect of pH on IBP degradation as a function of time (pH = 2.25–8.25) and the third to evaluate the effect of different UV light intensities on IBP degradation (E = 100–400 mJ m−2). The IBP initial concentration (IBP0) was varied in the range 30–60 mg L−1. The results obtained show that the concentration of IBP decreases along with treatment time, with a negative effect of the treated volume, i.e. smaller volumes, such as lower liquid heights, are more easily degraded. Moreover, the higher the pH, the better the IBP degradation; actually, when pH increases from 2.25 to 6.6 and 8.25, the IBP concentration, after an hour of treatment, decreases respectively to 45, 34 and 27 % of its initial value. In addition, as the intensity of light increases from 100 to 400 mJ m−2, the IBP concentration decreases to 34 % of its initial value. A reaction scheme is put forward in the paper, which well describes the effects of volume, pH and light intensity on the IBP degradation measured experimentally. Moreover, the IBP degradation by-products have been identified.
Ibuprofen photodegradation in aqueous solutions
PRISCIANDARO, MARINA;
2016-01-01
Abstract
The advanced treatment of polluted liquid streams containing traces of pharmaceutical compounds is a major issue, since more and more effluents from pharma labs and wastewaters containing the excretions of medically treated humans and animals are discharged in the conventional wastewater treatment plants without previous effective treatments. Ibuprofen is a widely used non-steroidal anti-inflammatory drug (NSAID), which explains why it is found in wastewaters so often. In this paper, the removal of IBP from simulated water streams was investigated by using a lab-scale experimental device, consisting of a batch reactor equipped with a lamp emitting monochromatic UV light at a fixed wavelength (254 nm) and various intensities. Three sets of experiments were carried out: the first to study IBP concentration as a function of time, at different volumes of treated solutions (V = 10–30 mL); the second to explore the effect of pH on IBP degradation as a function of time (pH = 2.25–8.25) and the third to evaluate the effect of different UV light intensities on IBP degradation (E = 100–400 mJ m−2). The IBP initial concentration (IBP0) was varied in the range 30–60 mg L−1. The results obtained show that the concentration of IBP decreases along with treatment time, with a negative effect of the treated volume, i.e. smaller volumes, such as lower liquid heights, are more easily degraded. Moreover, the higher the pH, the better the IBP degradation; actually, when pH increases from 2.25 to 6.6 and 8.25, the IBP concentration, after an hour of treatment, decreases respectively to 45, 34 and 27 % of its initial value. In addition, as the intensity of light increases from 100 to 400 mJ m−2, the IBP concentration decreases to 34 % of its initial value. A reaction scheme is put forward in the paper, which well describes the effects of volume, pH and light intensity on the IBP degradation measured experimentally. Moreover, the IBP degradation by-products have been identified.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.