In this paper we study the behaviour of a micro-sized semiconductor device by means of a hybrid model of hydrodynamic equations. First of all, taking into account the quantum effects in the semiconductor device, we derive a new model called the hybrid quantum hydrodynamic model (H-QHD) coupled with the Poisson equation for electric potential. In particular, we write the Bohm potential in a revised form. This new potential is derived heuristically by assuming that the energy of the electrons depends on the charge density n and on ∇n just in a restricted part of the device domain, whereas the remaining parts are modeled classically. Namely, the device is designed with some parts that feel the quantum effects and some parts do not. The main target is to investigate the existence of the stationary solutions for the hybrid quantum hydrodynamic model. Since the quantum effect is regionally degenerate, this will also makes the working equation regionally degenerate regarding its ellipticity, and the corresponding solutions are weak only. This paper seems the first framework to treat the equation with regionally degenerate ellipticity. In order to prove the existence of such weak solutions, we first construct a sequence of smooth QHD solutions, then prove that such a sequence weakly converges and its limit is just our desired weak solution for the hybrid QHD problem. The Debye length limit is also studied. Indeed, we prove that the weak solutions of the hybrid QHD weakly converge to their targets as the spacial Debye length vanishes. Finally, we carry out some numerical simulations for a simple device, which also confirm our theoretical results.

Stationary solutions to hybrid quantum hydrodynamical model of semiconductors in bounded domain

DI MICHELE, FEDERICA;MEI, MING;RUBINO, BRUNO;SAMPALMIERI, ROSELLA COLOMBA
2016

Abstract

In this paper we study the behaviour of a micro-sized semiconductor device by means of a hybrid model of hydrodynamic equations. First of all, taking into account the quantum effects in the semiconductor device, we derive a new model called the hybrid quantum hydrodynamic model (H-QHD) coupled with the Poisson equation for electric potential. In particular, we write the Bohm potential in a revised form. This new potential is derived heuristically by assuming that the energy of the electrons depends on the charge density n and on ∇n just in a restricted part of the device domain, whereas the remaining parts are modeled classically. Namely, the device is designed with some parts that feel the quantum effects and some parts do not. The main target is to investigate the existence of the stationary solutions for the hybrid quantum hydrodynamic model. Since the quantum effect is regionally degenerate, this will also makes the working equation regionally degenerate regarding its ellipticity, and the corresponding solutions are weak only. This paper seems the first framework to treat the equation with regionally degenerate ellipticity. In order to prove the existence of such weak solutions, we first construct a sequence of smooth QHD solutions, then prove that such a sequence weakly converges and its limit is just our desired weak solution for the hybrid QHD problem. The Debye length limit is also studied. Indeed, we prove that the weak solutions of the hybrid QHD weakly converge to their targets as the spacial Debye length vanishes. Finally, we carry out some numerical simulations for a simple device, which also confirm our theoretical results.
File in questo prodotto:
File Dimensione Formato  
DiMRS_IRIS.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/111376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact