We identify the asymptotic limit of the compressible non-isentropic Navier– Stokes system in the regime of low Mach, low Froude and high Reynolds number. The system is driven by a long range gravitational potential. We show convergence to an anelastic system for ill-prepared initial data. The proof is based on frequency localized Strichartz estimates for the acoustic equation based on the recent work of Metcalfe and Tataru.
An anelastic approximation arising in astrophysics
DONATELLI, DONATELLA;
2017-01-01
Abstract
We identify the asymptotic limit of the compressible non-isentropic Navier– Stokes system in the regime of low Mach, low Froude and high Reynolds number. The system is driven by a long range gravitational potential. We show convergence to an anelastic system for ill-prepared initial data. The proof is based on frequency localized Strichartz estimates for the acoustic equation based on the recent work of Metcalfe and Tataru.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Donatelli_Feireisl_2016_revised copy.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
303.57 kB
Formato
Adobe PDF
|
303.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.