We identify the asymptotic limit of the compressible non-isentropic Navier– Stokes system in the regime of low Mach, low Froude and high Reynolds number. The system is driven by a long range gravitational potential. We show convergence to an anelastic system for ill-prepared initial data. The proof is based on frequency localized Strichartz estimates for the acoustic equation based on the recent work of Metcalfe and Tataru.

An anelastic approximation arising in astrophysics

DONATELLI, DONATELLA;
2017-01-01

Abstract

We identify the asymptotic limit of the compressible non-isentropic Navier– Stokes system in the regime of low Mach, low Froude and high Reynolds number. The system is driven by a long range gravitational potential. We show convergence to an anelastic system for ill-prepared initial data. The proof is based on frequency localized Strichartz estimates for the acoustic equation based on the recent work of Metcalfe and Tataru.
File in questo prodotto:
File Dimensione Formato  
Donatelli_Feireisl_2016_revised copy.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 303.57 kB
Formato Adobe PDF
303.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/111582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact