The description of the electronic structure and magnetic properties of multi-centers transition metal complexes, especially of mixed-valence compounds, still represents a challenge for density functional theory (DFT) methods. The energies and the geometries of the correctly symmetrized low-spin ground state are estimated using the Heisenberg-Dirac-van Vleck spin Hamiltonian within the extended broken symmetry method introduced by Marx and co-workers [Nair et al., J. Chem. Theory Comput. 4, 1174-1188 (2008)]. In the present work we extend the application of this technique, originally implemented using the DFT+U scheme, to the use of hybrid functionals, investigating the ground-state properties of di-iron and di-manganese compounds. The calculated magnetic coupling and vibrational properties of ferredoxin molecular models are in good agreements with experimental results and DFT+U calculations. Six different mixed-valence Mn(III)-Mn(IV) compounds have been extensively studied optimizing the geometry in low-spin, high-spin, and broken-symmetry states and with different functionals. The magnetic coupling constants calculated by the extended broken symmetry approach using B3LYP functional presents a remarkable agreement with the experimental results, revealing that the proposed methodology provides a consistent and accurate DFT approach to the electronic structure of multi-centers transition metal complexes.

Magnetic coupling constants and vibrational frequencies by extended broken symmetry approach with hybrid functionals.

GUIDONI, Leonardo
2012

Abstract

The description of the electronic structure and magnetic properties of multi-centers transition metal complexes, especially of mixed-valence compounds, still represents a challenge for density functional theory (DFT) methods. The energies and the geometries of the correctly symmetrized low-spin ground state are estimated using the Heisenberg-Dirac-van Vleck spin Hamiltonian within the extended broken symmetry method introduced by Marx and co-workers [Nair et al., J. Chem. Theory Comput. 4, 1174-1188 (2008)]. In the present work we extend the application of this technique, originally implemented using the DFT+U scheme, to the use of hybrid functionals, investigating the ground-state properties of di-iron and di-manganese compounds. The calculated magnetic coupling and vibrational properties of ferredoxin molecular models are in good agreements with experimental results and DFT+U calculations. Six different mixed-valence Mn(III)-Mn(IV) compounds have been extensively studied optimizing the geometry in low-spin, high-spin, and broken-symmetry states and with different functionals. The magnetic coupling constants calculated by the extended broken symmetry approach using B3LYP functional presents a remarkable agreement with the experimental results, revealing that the proposed methodology provides a consistent and accurate DFT approach to the electronic structure of multi-centers transition metal complexes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/11176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact