We give a regularity result for local minimizers u: Ω ⊂ R3→ R3 of a special class of polyconvex functionals. Under some structure assumptions on the energy density, we prove that local minimizers u are locally bounded. For each component uα of u, we first prove a Caccioppoli’s inequality and then apply De Giorgi’s iteration method to get the boundedness of uα. Our result can be applied to the polyconvex integral ∫Ω(∑α=13|Duα|p+|adj2Du|q+|detDu|r)dxwith suitable p, q, r> 1.
Local Boundedness for Minimizers of Some Polyconvex Integrals
LEONETTI, Francesco;
2017-01-01
Abstract
We give a regularity result for local minimizers u: Ω ⊂ R3→ R3 of a special class of polyconvex functionals. Under some structure assumptions on the energy density, we prove that local minimizers u are locally bounded. For each component uα of u, we first prove a Caccioppoli’s inequality and then apply De Giorgi’s iteration method to get the boundedness of uα. Our result can be applied to the polyconvex integral ∫Ω(∑α=13|Duα|p+|adj2Du|q+|detDu|r)dxwith suitable p, q, r> 1.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CupLeoMas_poli25_5_2016.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
233.9 kB
Formato
Adobe PDF
|
233.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.