We give a regularity result for local minimizers u: Ω ⊂ R3→ R3 of a special class of polyconvex functionals. Under some structure assumptions on the energy density, we prove that local minimizers u are locally bounded. For each component uα of u, we first prove a Caccioppoli’s inequality and then apply De Giorgi’s iteration method to get the boundedness of uα. Our result can be applied to the polyconvex integral ∫Ω(∑α=13|Duα|p+|adj2Du|q+|detDu|r)dxwith suitable p, q, r> 1.

Local Boundedness for Minimizers of Some Polyconvex Integrals

LEONETTI, Francesco;
2017

Abstract

We give a regularity result for local minimizers u: Ω ⊂ R3→ R3 of a special class of polyconvex functionals. Under some structure assumptions on the energy density, we prove that local minimizers u are locally bounded. For each component uα of u, we first prove a Caccioppoli’s inequality and then apply De Giorgi’s iteration method to get the boundedness of uα. Our result can be applied to the polyconvex integral ∫Ω(∑α=13|Duα|p+|adj2Du|q+|detDu|r)dxwith suitable p, q, r> 1.
File in questo prodotto:
File Dimensione Formato  
CupLeoMas_poli25_5_2016.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 233.9 kB
Formato Adobe PDF
233.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/111947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact