Laminated veneer lumber (LVL) structural members have recently been proposed for multi-storey timber buildings based on ongoing research at University of Canterbury, New Zealand. The members are designed with unbonded post-tensioning for recentering and energy dissipation through the ductile connections. This paper describes the experimental and numerical investigation of post-tensioned LVL walls coupled with plywood sheets, under quasistatic cyclic testing protocols. It is observed that energy is dissipated mostly through yielding of the nails, and the LVL walls return close to their initial position while remaining virtually undamaged. The same specimen has been tested under repeated cyclic loading to investigate the performance of the arrangement under more than one seismic event (a major earthquake followed by a significant aftershock). Different nail spacing and arrangements have been tested to compare their energy dissipation characteristics. The results indicate good seismic performance, characterized by negligible damage of the structural members and very small residual deformations. The only component significantly damaged is the nailed connection between the plywood sheet and the LVL walls. Although the nails yield and there is a reduction in stiffness the system exhibits a stable performance without any major degradation throughout the loading regime. The plywood can be easily removed and replaced with new sheets after an earthquake, which are reasonably cheap and easy to install, allowing for major reduction in downtime. With these additional benefits the concept has potential for consideration as an alternative solution for multi-storey timber buildings.

Response of plywood-coupled post-tensioned LVL walls to repeated seismic loading

FRAGIACOMO, Massimo;
2016

Abstract

Laminated veneer lumber (LVL) structural members have recently been proposed for multi-storey timber buildings based on ongoing research at University of Canterbury, New Zealand. The members are designed with unbonded post-tensioning for recentering and energy dissipation through the ductile connections. This paper describes the experimental and numerical investigation of post-tensioned LVL walls coupled with plywood sheets, under quasistatic cyclic testing protocols. It is observed that energy is dissipated mostly through yielding of the nails, and the LVL walls return close to their initial position while remaining virtually undamaged. The same specimen has been tested under repeated cyclic loading to investigate the performance of the arrangement under more than one seismic event (a major earthquake followed by a significant aftershock). Different nail spacing and arrangements have been tested to compare their energy dissipation characteristics. The results indicate good seismic performance, characterized by negligible damage of the structural members and very small residual deformations. The only component significantly damaged is the nailed connection between the plywood sheet and the LVL walls. Although the nails yield and there is a reduction in stiffness the system exhibits a stable performance without any major degradation throughout the loading regime. The plywood can be easily removed and replaced with new sheets after an earthquake, which are reasonably cheap and easy to install, allowing for major reduction in downtime. With these additional benefits the concept has potential for consideration as an alternative solution for multi-storey timber buildings.
9783903039001
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/112365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact