In this note, we give an alternative proof of the Virial The- orem for the Dirac equation perturbed with a Coulomb-like potential, result which goes back to Albeverio (Ann Phys 71:167–276, 1972), Kalf (J Funct Anal 21:389–396, 1976) and refined by Leinfelder (Integral Equ Oper Theory 4(2):226–244, 1981). We will deduce it proving a Pohozaev- like identity for a Neumann boundary value problem for an elliptic equa- tion in R4+ which, following ideas going back to Caffarelli and Silvestre (Commun Partial Differ Equ 32(7–9):1245–1260, 2007) can be related to the eigenvalue problem for the Dirac equation in R^3 .
Pohozaev identity and Virial Theorem for the Dirac-Coulomb operator
NOLASCO, MARGHERITA
2017-01-01
Abstract
In this note, we give an alternative proof of the Virial The- orem for the Dirac equation perturbed with a Coulomb-like potential, result which goes back to Albeverio (Ann Phys 71:167–276, 1972), Kalf (J Funct Anal 21:389–396, 1976) and refined by Leinfelder (Integral Equ Oper Theory 4(2):226–244, 1981). We will deduce it proving a Pohozaev- like identity for a Neumann boundary value problem for an elliptic equa- tion in R4+ which, following ideas going back to Caffarelli and Silvestre (Commun Partial Differ Equ 32(7–9):1245–1260, 2007) can be related to the eigenvalue problem for the Dirac equation in R^3 .File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.