Osteoclast interaction with extracellular matrix drives the sequential events that end with bone resorption. However, the role of matrix proteins is not yet fully understood. We studied this problem on human osteoclast-like cells derived from giant cell tumors of bone (GCT cells). On GCT cells we considered cytoskeletal organization, adhesion properties, and integrin expression upon plating in serum-free medium onto fibronectin (FN), collagen (COL), thrombospondin (TSP), bone sialoprotein (BSPII), and osteopontin (OPN). GCT cells promptly adhered and spread on FN, BSPII, and OPN, while only 50% adhered on COL and none on TSP. The integrin beta(1) chain was always associated to focal adhesions, while the alpha(v) beta(3) heterodimer was detected in focal contacts only upon plating on BSPII, OPN, and FN. The focal clustering of beta(1) was impaired by monensin treatment, indicating that endogenous FN secretion was required to drive beta(1) into focal contacts. Conversely, alpha(v),beta(3) clustering was also not affected by monensin when cells were plated onto plasma FN. Immunoprecipitation of metabolically labeled GCT cell lysates showed that three different heterodimers (alpha(v) beta(3), alpha(3) beta(1), and alpha(5) beta(1)) were assembled. Adhesion to FN was completely inhibited by beta(1) antibodies at dilutions up to 1:400, while beta(3) antibodies, at similar dilutions, impaired spreading but not adhesion. We conclude that alpha(v) beta(3) is the main integrin used by GCT cells in bone recognition. We also suggest that selected substrata may induce the release and the organization of endogenous FN that eventually drives the recruitment of a beta(1) integrin receptor into focal contacts. (C) 1994 Academic Press, Inc.
ADHESION PROPERTIES AND INTEGRIN EXPRESSION OF CULTURED HUMAN OSTEOCLAST-LIKE CELLS
TETI, ANNA MARIA;
1994-01-01
Abstract
Osteoclast interaction with extracellular matrix drives the sequential events that end with bone resorption. However, the role of matrix proteins is not yet fully understood. We studied this problem on human osteoclast-like cells derived from giant cell tumors of bone (GCT cells). On GCT cells we considered cytoskeletal organization, adhesion properties, and integrin expression upon plating in serum-free medium onto fibronectin (FN), collagen (COL), thrombospondin (TSP), bone sialoprotein (BSPII), and osteopontin (OPN). GCT cells promptly adhered and spread on FN, BSPII, and OPN, while only 50% adhered on COL and none on TSP. The integrin beta(1) chain was always associated to focal adhesions, while the alpha(v) beta(3) heterodimer was detected in focal contacts only upon plating on BSPII, OPN, and FN. The focal clustering of beta(1) was impaired by monensin treatment, indicating that endogenous FN secretion was required to drive beta(1) into focal contacts. Conversely, alpha(v),beta(3) clustering was also not affected by monensin when cells were plated onto plasma FN. Immunoprecipitation of metabolically labeled GCT cell lysates showed that three different heterodimers (alpha(v) beta(3), alpha(3) beta(1), and alpha(5) beta(1)) were assembled. Adhesion to FN was completely inhibited by beta(1) antibodies at dilutions up to 1:400, while beta(3) antibodies, at similar dilutions, impaired spreading but not adhesion. We conclude that alpha(v) beta(3) is the main integrin used by GCT cells in bone recognition. We also suggest that selected substrata may induce the release and the organization of endogenous FN that eventually drives the recruitment of a beta(1) integrin receptor into focal contacts. (C) 1994 Academic Press, Inc.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.