The Key Search Task (KST) is a neuropsychological test that requires strategies for searching a lost key in an imaginary field. This request may involve different cognitive processes as mental imagery and navigation planning. This study was aimed at investigating, by a twenty-channel functional near-infrared spectroscopy (fNIRS) system, the hemodynamic response (i.e., oxygenated-hemoglobin (O2Hb) and deoxygenated-hemoglobin (HHb) changes) of the prefrontal cortex in navigation planning. A right ventrolateral prefrontal cortex (rVLPFC) activation during the KST was hypothesized. Thirty-eight volunteers performed the KST and a Control Task (CT), the latter requiring the volunteers to mark the X letter. An activation (i.e., increase/decrease in O2Hb/ HHb) of: 1) rVLPFC during the KST execution, and 2) bilateral dorsolateral prefrontal cortex (DLPFC) during the CT execution was found. The present study provides a contribution in localizing the rVLPFC as the critically active region, within the frontal lobes, that was found maximally activated during mental navigation in the mind’s eye of healthy participants while performing the KST. Considering the contribution of rVLPFC in spatial navigation, its activation suggests that the KST could be adopted in the clinical routine for investigating navigation planning. Compared to other neuroimaging techniques, fNIRS (with its relatively low physical constraints) contributes to better clarifying the role of rVLPFC in some aspects of human navigation. Therefore, the combined use of the fNIRS and the KST could be considered as an innovative and valid tool to evaluate fundamental functions for everyday life, such as spatial navigation planning.
Does ventrolateral prefrontal cortex help in searching for the lost key? Evidence from an fNIRS study
CARRIERI, MARIKA;LANCIA, STEFANIA;BOCCHI, ALESSIA;FERRARI, Marco;PICCARDI, LAURA;QUARESIMA, VALENTINA
2018-01-01
Abstract
The Key Search Task (KST) is a neuropsychological test that requires strategies for searching a lost key in an imaginary field. This request may involve different cognitive processes as mental imagery and navigation planning. This study was aimed at investigating, by a twenty-channel functional near-infrared spectroscopy (fNIRS) system, the hemodynamic response (i.e., oxygenated-hemoglobin (O2Hb) and deoxygenated-hemoglobin (HHb) changes) of the prefrontal cortex in navigation planning. A right ventrolateral prefrontal cortex (rVLPFC) activation during the KST was hypothesized. Thirty-eight volunteers performed the KST and a Control Task (CT), the latter requiring the volunteers to mark the X letter. An activation (i.e., increase/decrease in O2Hb/ HHb) of: 1) rVLPFC during the KST execution, and 2) bilateral dorsolateral prefrontal cortex (DLPFC) during the CT execution was found. The present study provides a contribution in localizing the rVLPFC as the critically active region, within the frontal lobes, that was found maximally activated during mental navigation in the mind’s eye of healthy participants while performing the KST. Considering the contribution of rVLPFC in spatial navigation, its activation suggests that the KST could be adopted in the clinical routine for investigating navigation planning. Compared to other neuroimaging techniques, fNIRS (with its relatively low physical constraints) contributes to better clarifying the role of rVLPFC in some aspects of human navigation. Therefore, the combined use of the fNIRS and the KST could be considered as an innovative and valid tool to evaluate fundamental functions for everyday life, such as spatial navigation planning.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.