The effect of the transverse-direction electrical fields on the stability and dynamics of a capillary discharge Z-pinch, at conditions for which soft x-ray lasing in Ne-like Ar has been demonstrated, is studied. It is shown that the transverse electrical fields of the sliding surface discharge provide the instability-free compression and heating of the plasma. The stable and homogeneous heating and compression allows achievement of the appropriate conditions for the soft x-ray lasing in Ne-like Ar. Numerical calculations using the MHD model of the discharge yield new predictions for dynamics and stability of the plasma collapse in the presence of the transverse electrical fields and explain details of experimental observations without artificial adjustments.
Effect of transverse electrical fields on x-ray amplification in a capillary-discharge Z-pinch
PALLADINO, Libero
2001-01-01
Abstract
The effect of the transverse-direction electrical fields on the stability and dynamics of a capillary discharge Z-pinch, at conditions for which soft x-ray lasing in Ne-like Ar has been demonstrated, is studied. It is shown that the transverse electrical fields of the sliding surface discharge provide the instability-free compression and heating of the plasma. The stable and homogeneous heating and compression allows achievement of the appropriate conditions for the soft x-ray lasing in Ne-like Ar. Numerical calculations using the MHD model of the discharge yield new predictions for dynamics and stability of the plasma collapse in the presence of the transverse electrical fields and explain details of experimental observations without artificial adjustments.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.