Chronic wounds are a major, often underestimated, health problem for the elderly. Standard wound care products are not usually manufactured to meet the increased demand of nutrients by skin cells in order to regenerate new tissue and accelerate healing. This work was therefore undertaken to establish whether wound healing could be accelerated by nutritional supplementation with a specific mixture tailored to human need of essential amino acids (EAAs) without topical medication. To this end, using a skin full-thickness excisional model in aged rats, we compared the closure dynamics of undressing wounds in animals fed an EAAs-enriched diet or standard diet. We assessed the degree of fibrosis and inflammation, as well as relevant signaling molecules such as COL1A1, iNOS and TGFβ1. The results showed wound healing was accelerated in EAAs-fed rats, which was accompanied by reduced inflammation and changes in TGFβ1 and COL1A1 expression. Collectively, our findings indicate that dietary supplementation with balanced EAAs diet could serve as a strategy to accelerate wound healing without inducing fibrosis and could therefore be a simple but pivotal therapeutic approach in human also.
Diet enrichment with a specific essential free amino acid mixture improves healing of undressed wounds in aged rats
FLATI, VINCENZO;
2017-01-01
Abstract
Chronic wounds are a major, often underestimated, health problem for the elderly. Standard wound care products are not usually manufactured to meet the increased demand of nutrients by skin cells in order to regenerate new tissue and accelerate healing. This work was therefore undertaken to establish whether wound healing could be accelerated by nutritional supplementation with a specific mixture tailored to human need of essential amino acids (EAAs) without topical medication. To this end, using a skin full-thickness excisional model in aged rats, we compared the closure dynamics of undressing wounds in animals fed an EAAs-enriched diet or standard diet. We assessed the degree of fibrosis and inflammation, as well as relevant signaling molecules such as COL1A1, iNOS and TGFβ1. The results showed wound healing was accelerated in EAAs-fed rats, which was accompanied by reduced inflammation and changes in TGFβ1 and COL1A1 expression. Collectively, our findings indicate that dietary supplementation with balanced EAAs diet could serve as a strategy to accelerate wound healing without inducing fibrosis and could therefore be a simple but pivotal therapeutic approach in human also.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.