Glioblastoma (GB), the most-common cancer in the adult brain, despite surgery and radio/ chemotherapy, is to date almost incurable. Many hypoxic tumors, including GB, show metabolic reprogramming to sustain uncontrolled proliferation, hypoxic conditions and angiogenesis. Peroxisome Proliferator-activated Receptors (PPAR), particularly the α isotype, have been involved in the control of energetic metabolism. Herein, we characterized patient-derived GB neurospheres focusing on their energetic metabolism and PPARα expression. Moreover, we used a specific PPARα antagonist and studied its effects on the energetic metabolism and cell proliferation/survival of GB stem cells. The results obtained demonstrate that tumor neurospheres are metabolically reprogrammed up-regulating glucose transporter, glucose uptake and glycogen and lipid storage, mainly under hypoxic culture conditions. Treatment with the PPARα antagonist GW6471 resulted in decreased cell proliferation and neurospheres formation. Therefore, PPARα antagonism arises as a potent new strategy as adjuvant to gold standard therapies for GB for counteracting recurrences and opening the way for pre-clinical trials for this class of compounds. When tumor neurospheres were grown in hypoxic conditions in the presence of different glucose concentrations, the most diluted one (0.25g/L) mimicking the real concentration present in the neurosphere core, PPARα increase/PPARγ decrease, increased proliferation and cholesterol content, decreased glycogen particles and LDs were observed. All these responses were reverted by the 72 h treatment with the PPARα antagonist.

Energy metabolism in glioblastoma stem cells: PPARα a metabolic adaptor to intratumoral microenvironment

CRISTIANO, LOREDANA;GALZIO, RENATO;BENEDETTI, ELISABETTA;CINQUE, BENEDETTA;CASTELLI, VANESSA;CIFONE, MARIA GRAZIA;IPPOLITI, RODOLFO;CIMINI, Anna Maria
;
D'ANGELO, MICHELE
2017-01-01

Abstract

Glioblastoma (GB), the most-common cancer in the adult brain, despite surgery and radio/ chemotherapy, is to date almost incurable. Many hypoxic tumors, including GB, show metabolic reprogramming to sustain uncontrolled proliferation, hypoxic conditions and angiogenesis. Peroxisome Proliferator-activated Receptors (PPAR), particularly the α isotype, have been involved in the control of energetic metabolism. Herein, we characterized patient-derived GB neurospheres focusing on their energetic metabolism and PPARα expression. Moreover, we used a specific PPARα antagonist and studied its effects on the energetic metabolism and cell proliferation/survival of GB stem cells. The results obtained demonstrate that tumor neurospheres are metabolically reprogrammed up-regulating glucose transporter, glucose uptake and glycogen and lipid storage, mainly under hypoxic culture conditions. Treatment with the PPARα antagonist GW6471 resulted in decreased cell proliferation and neurospheres formation. Therefore, PPARα antagonism arises as a potent new strategy as adjuvant to gold standard therapies for GB for counteracting recurrences and opening the way for pre-clinical trials for this class of compounds. When tumor neurospheres were grown in hypoxic conditions in the presence of different glucose concentrations, the most diluted one (0.25g/L) mimicking the real concentration present in the neurosphere core, PPARα increase/PPARγ decrease, increased proliferation and cholesterol content, decreased glycogen particles and LDs were observed. All these responses were reverted by the 72 h treatment with the PPARα antagonist.
File in questo prodotto:
File Dimensione Formato  
Energy metabolism in glioblastoma stem cells- PPARα a metabolic adaptor to intratumoral microenvironment.compressed.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 915.43 kB
Formato Adobe PDF
915.43 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/115242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact