We report observations of field emission from self-catalyzed GaAs nanowires grown on Si (111). The measurements were taken inside a scanning electron microscope chamber with a nano-controlled tungsten tip functioning as anode. Experimental data were analyzed in the framework of the Fowler-Nordheim theory. We demonstrate stable current up to 10-7 A emitted from the tip of single nanowire, with a field enhancement factor β of up to 112 at anode-cathode distance d = 350 nm. A linear dependence of β on the anode-cathode distance was found. We also show that the presence of a Ga catalyst droplet suppresses the emission of current from the nanowire tip. This allowed for the detection of field emission from the nanowire sidewalls, which occurred with a reduced field enhancement factor and stability. This study further extends GaAs technology to vacuum electronics applications.
Field emission from self-catalyzed gaas nanowires
PASSACANTANDO, MAURIZIO;
2017-01-01
Abstract
We report observations of field emission from self-catalyzed GaAs nanowires grown on Si (111). The measurements were taken inside a scanning electron microscope chamber with a nano-controlled tungsten tip functioning as anode. Experimental data were analyzed in the framework of the Fowler-Nordheim theory. We demonstrate stable current up to 10-7 A emitted from the tip of single nanowire, with a field enhancement factor β of up to 112 at anode-cathode distance d = 350 nm. A linear dependence of β on the anode-cathode distance was found. We also show that the presence of a Ga catalyst droplet suppresses the emission of current from the nanowire tip. This allowed for the detection of field emission from the nanowire sidewalls, which occurred with a reduced field enhancement factor and stability. This study further extends GaAs technology to vacuum electronics applications.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.