A non-cyclic finite p-group G is said to be thin if every normal subgroup of G lies between two consecutive terms of the lower central series and |γi(G):γi+1(G)|≤p2 for all i≥1. In this paper, we determine Beauville structures in metabelian thin p-groups.

Metabelian thin Beauville p-groups

Gavioli, Norberto;
2018

Abstract

A non-cyclic finite p-group G is said to be thin if every normal subgroup of G lies between two consecutive terms of the lower central series and |γi(G):γi+1(G)|≤p2 for all i≥1. In this paper, we determine Beauville structures in metabelian thin p-groups.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/119630
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact