We derive exponentially fitted two-step Runge-Kutta methods for the numerical solution ofy′=f(x,y), specially tuned to the behaviour of the solution. Such methods have nonconstant coefficients which depend on a parameter to be suitably estimated. The construction of the methods is shown and a strategy of parameter selection is presented. Some numerical experiments are provided to confirm the theoretical expectations. © 2012 Elsevier Inc. All rights reserved.

Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection

D'Ambrosio, R.;
2012-01-01

Abstract

We derive exponentially fitted two-step Runge-Kutta methods for the numerical solution ofy′=f(x,y), specially tuned to the behaviour of the solution. Such methods have nonconstant coefficients which depend on a parameter to be suitably estimated. The construction of the methods is shown and a strategy of parameter selection is presented. Some numerical experiments are provided to confirm the theoretical expectations. © 2012 Elsevier Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/120015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 29
social impact