Thermal and infrared imagery creates considerable developments in Non-Destructive Testing (NDT) area. Here, a thermography method for NDT specimens inspection is addressed by applying a technique for computation of eigen-decomposition which refers as Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT). The proposed approach uses a shorter computational alternative to estimate covariance matrix and Singular Value Decomposition (SVD) to obtain the result of Principal Component Thermography (PCT) and ultimately segments the defects in the specimens applying color based K-medoids clustering approach. The problem of computational expenses for highdimensional thermal image acquisition is also investigated. Three types of specimens (CFRP, Plexiglas and Aluminium) have been used for comparative benchmarking. The results conclusively indicate the promising performance and demonstrate a confirmation for the outlined properties.

Comparative analysis on thermal non-destructive testing imagery applying Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT)

Stefano Sfarra;
2017-01-01

Abstract

Thermal and infrared imagery creates considerable developments in Non-Destructive Testing (NDT) area. Here, a thermography method for NDT specimens inspection is addressed by applying a technique for computation of eigen-decomposition which refers as Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT). The proposed approach uses a shorter computational alternative to estimate covariance matrix and Singular Value Decomposition (SVD) to obtain the result of Principal Component Thermography (PCT) and ultimately segments the defects in the specimens applying color based K-medoids clustering approach. The problem of computational expenses for highdimensional thermal image acquisition is also investigated. Three types of specimens (CFRP, Plexiglas and Aluminium) have been used for comparative benchmarking. The results conclusively indicate the promising performance and demonstrate a confirmation for the outlined properties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/120324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 67
social impact