The application of the thermal and infrared technology in different areas of research is considerably increasing. These applications involve Non-destructive Testing (NDT), Medical analysis (Computer Aid Diagnosis/Detection- CAD), Arts and Archaeology among many others. In the arts and archaeology field, infrared technology provides significant contributions in term of finding defects of possible impaired regions. This has been done through a wide range of different thermographic experiments and infrared methods. The proposed approach here focuses on application of some known factor analysis methods such as standard Non-Negative Matrix Factorization (NMF) optimized by gradient-descent-based multiplicative rules (SNMF1) and standard NMF optimized by Non-negative least squares (NNLS) active-set algorithm (SNMF2) and eigen decomposition approaches such as Principal Component Thermography (PCT), Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT) to obtain the thermal features. On one hand, these methods are usually applied as preprocessing before clustering for the purpose of segmentation of possible defects. On the other hand, a wavelet based data fusion combines the data of each method with PCT to increase the accuracy of the algorithm. The quantitative assessment of these approaches indicates considerable segmentation along with the reasonable computational complexity. It shows the promising performance and demonstrated a confirmation for the outlined properties. In particular, a polychromatic wooden statue and a fresco were analyzed using the above mentioned methods and interesting results were obtained.
Quantitative assessment in thermal image segmentation for artistic objects
Stefano Sfarra
;
2017-01-01
Abstract
The application of the thermal and infrared technology in different areas of research is considerably increasing. These applications involve Non-destructive Testing (NDT), Medical analysis (Computer Aid Diagnosis/Detection- CAD), Arts and Archaeology among many others. In the arts and archaeology field, infrared technology provides significant contributions in term of finding defects of possible impaired regions. This has been done through a wide range of different thermographic experiments and infrared methods. The proposed approach here focuses on application of some known factor analysis methods such as standard Non-Negative Matrix Factorization (NMF) optimized by gradient-descent-based multiplicative rules (SNMF1) and standard NMF optimized by Non-negative least squares (NNLS) active-set algorithm (SNMF2) and eigen decomposition approaches such as Principal Component Thermography (PCT), Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT) to obtain the thermal features. On one hand, these methods are usually applied as preprocessing before clustering for the purpose of segmentation of possible defects. On the other hand, a wavelet based data fusion combines the data of each method with PCT to increase the accuracy of the algorithm. The quantitative assessment of these approaches indicates considerable segmentation along with the reasonable computational complexity. It shows the promising performance and demonstrated a confirmation for the outlined properties. In particular, a polychromatic wooden statue and a fresco were analyzed using the above mentioned methods and interesting results were obtained.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.