In this paper some aspects concerning the calibration uncertainty of three-axis low-cost accelerometers for possible use in diagnostics of civil buildings are considered, using a linear slide and a laser vibrometer as the reference. In order to analyse the principal and cross sensitivity and the offset of the sensor in dynamic conditions, the sensitivity matrix method has been used. Some considerations about the operating limits of a low-cost embedded system with MEMS accelerometer have been discussed, with reference to the calibration procedure. In particular, the effects of the non-constant sampling and of the achievable sampling rate, are studied with reference to the calibration uncertainty and to the capability of the calibration procedure to assess the best metrological performances of the system under test.
Identification of calibration and operating limits of a low-cost embedded system with MEMS accelerometer
D'Emilia G.
Membro del Collaboration Group
;Di Gasbarro D.Membro del Collaboration Group
;Gaspari A.Membro del Collaboration Group
;Natale E.Membro del Collaboration Group
2017-01-01
Abstract
In this paper some aspects concerning the calibration uncertainty of three-axis low-cost accelerometers for possible use in diagnostics of civil buildings are considered, using a linear slide and a laser vibrometer as the reference. In order to analyse the principal and cross sensitivity and the offset of the sensor in dynamic conditions, the sensitivity matrix method has been used. Some considerations about the operating limits of a low-cost embedded system with MEMS accelerometer have been discussed, with reference to the calibration procedure. In particular, the effects of the non-constant sampling and of the achievable sampling rate, are studied with reference to the calibration uncertainty and to the capability of the calibration procedure to assess the best metrological performances of the system under test.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.