We prove a variational principle for geodesics on a semi-Riemannian manifold M of arbitrary index k and possessing k linearly independent Killing vector fields that generate a timelike distribution on M. Using such a principle and a suitable completeness condition for M, we prove some existence and multiplicity results for geodesics joining two fixed points of M. © 2000 Academic Press.

On the geodesical connectedness for a class of Semi-Riemannian manifolds

Sampalmieri, Rosella
2000-01-01

Abstract

We prove a variational principle for geodesics on a semi-Riemannian manifold M of arbitrary index k and possessing k linearly independent Killing vector fields that generate a timelike distribution on M. Using such a principle and a suitable completeness condition for M, we prove some existence and multiplicity results for geodesics joining two fixed points of M. © 2000 Academic Press.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/120941
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact