The primary objective of this work is to develop coarse-graining schemes for stochastic many-body microscopic models and quantify their effectiveness in terms of a priori and a posteriori error analysis. In this paper we focus on stochastic lattice systems of interacting particles at equilibrium. The proposed algorithms are derived from an initial coarse-grained approximation that is directly computable by Monte Carlo simulations, and the corresponding numerical error is calculated using the specific relative entropy between the exact and approximate coarse-grained equilibrium measures. Subsequently we carry out a cluster expansion around this first - and often inadequate - approximation and obtain more accurate coarse-graining schemes. The cluster expansions yield also sharp a posteriori error estimates for the coarse-grained approximations that can be used for the construction of adaptive coarse-graining methods. We present a number of numerical examples that demonstrate that the coarse-graining schemes developed here allow for accurate predictions of critical behavior and hysteresis in systems with intermediate and long-range interactions. We also present examples where they substantially improve predictions of earlier coarse-graining schemes for short-range interactions. © EDP Sciences, SMAI 2007.

Coarse-graining schemes and a posteriori error estimates for stochastic lattice systems

Tsagkarogiannis, Dimitrios
2007-01-01

Abstract

The primary objective of this work is to develop coarse-graining schemes for stochastic many-body microscopic models and quantify their effectiveness in terms of a priori and a posteriori error analysis. In this paper we focus on stochastic lattice systems of interacting particles at equilibrium. The proposed algorithms are derived from an initial coarse-grained approximation that is directly computable by Monte Carlo simulations, and the corresponding numerical error is calculated using the specific relative entropy between the exact and approximate coarse-grained equilibrium measures. Subsequently we carry out a cluster expansion around this first - and often inadequate - approximation and obtain more accurate coarse-graining schemes. The cluster expansions yield also sharp a posteriori error estimates for the coarse-grained approximations that can be used for the construction of adaptive coarse-graining methods. We present a number of numerical examples that demonstrate that the coarse-graining schemes developed here allow for accurate predictions of critical behavior and hysteresis in systems with intermediate and long-range interactions. We also present examples where they substantially improve predictions of earlier coarse-graining schemes for short-range interactions. © EDP Sciences, SMAI 2007.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/121802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact