Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium–calmodulin-dependent protein kinase II and protein kinase C that underlie long-term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over-expression of PKMζ; pre-treatment with either the IR inhibitor 3-Bromo-5-t-butyl-4-hydroxy-benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo-substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre-treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin-dependent PKMζ over-expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ. We show that insulin induces activation of protein kinase M zeta (PKMζ) and phosphorylation of Glutamate receptor 1 (GluR1); treatment with 3-Bromo-5-t-butyl-4-hydroxy-benzylidenemalonitrile (AG1024) or amyloid beta oligomers decrease PKMζ expression. Pre-treatment with AG1024 or Zeta Inhibitory Peptide (ZIP) erases insulin-dependent GluR1 phosphorylation. These findings suggest a mechanistic explanation of insulin receptor signaling in memory and insulin resistance in Alzheimer's disease.

Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium-calmodulindependent protein kinase II and protein kinase C that underlie long-term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over-expression of PKMζ; pre-treatment with either the IR inhibitor 3-Bromo-5-tbutyl-4-hydroxy-benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo-substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre-treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin-dependent PKMζ over-expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ.

Insulin induces phosphorylation of the AMPA receptor subunit GluR1, reversed by ZIP, and over-expression of protein kinase M zeta, reversed by amyloid beta

ADZOVIC, LINDA;Domenici, Luciano
2014-01-01

Abstract

Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium–calmodulin-dependent protein kinase II and protein kinase C that underlie long-term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over-expression of PKMζ; pre-treatment with either the IR inhibitor 3-Bromo-5-t-butyl-4-hydroxy-benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo-substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre-treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin-dependent PKMζ over-expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ. We show that insulin induces activation of protein kinase M zeta (PKMζ) and phosphorylation of Glutamate receptor 1 (GluR1); treatment with 3-Bromo-5-t-butyl-4-hydroxy-benzylidenemalonitrile (AG1024) or amyloid beta oligomers decrease PKMζ expression. Pre-treatment with AG1024 or Zeta Inhibitory Peptide (ZIP) erases insulin-dependent GluR1 phosphorylation. These findings suggest a mechanistic explanation of insulin receptor signaling in memory and insulin resistance in Alzheimer's disease.
Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium-calmodulindependent protein kinase II and protein kinase C that underlie long-term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over-expression of PKMζ; pre-treatment with either the IR inhibitor 3-Bromo-5-tbutyl-4-hydroxy-benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo-substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre-treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin-dependent PKMζ over-expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/121846
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 30
social impact