Flavoproteins, containing flavin chromophores, are enzymes capable of transferring electrons at very high speeds. The ultrafast photoinduced electron-transfer (ET) kinetics of riboflavin binding protein to the excited riboflavin was studied by femtosecond spectroscopy and found to occur within a few hundred femtoseconds [ Zhong and Zewail, Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 11867-11872 ]. This ultrafast kinetics was attributed to the presence of two aromatic rings that could transfer the electron to riboflavin: the side chains of tryptophan 156 and tyrosine 75. However, the underlying ET mechanism remained unclear. Here, using a hybrid quantum mechanical-molecular dynamics approach, we perform ET dynamics simulations taking into account the motion of the protein and the solvent upon ET. This approach reveals that ET occurs via a major reaction channel involving tyrosine 75 (83%) and a minor one involving tryptophan 156 (17%). We also show that the protein environment is designed to ensure the fast quenching of the riboflavin excited state.

Alternative Electron-Transfer Channels Ensure Ultrafast Deactivation of Light-Induced Excited States in Riboflavin Binding Protein

Zanetti-Polzi, Laura;Aschi, Massimiliano;Daidone, Isabella
2017-01-01

Abstract

Flavoproteins, containing flavin chromophores, are enzymes capable of transferring electrons at very high speeds. The ultrafast photoinduced electron-transfer (ET) kinetics of riboflavin binding protein to the excited riboflavin was studied by femtosecond spectroscopy and found to occur within a few hundred femtoseconds [ Zhong and Zewail, Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 11867-11872 ]. This ultrafast kinetics was attributed to the presence of two aromatic rings that could transfer the electron to riboflavin: the side chains of tryptophan 156 and tyrosine 75. However, the underlying ET mechanism remained unclear. Here, using a hybrid quantum mechanical-molecular dynamics approach, we perform ET dynamics simulations taking into account the motion of the protein and the solvent upon ET. This approach reveals that ET occurs via a major reaction channel involving tyrosine 75 (83%) and a minor one involving tryptophan 156 (17%). We also show that the protein environment is designed to ensure the fast quenching of the riboflavin excited state.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/122281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact