We report the electrical characterization and field emission properties of MoS 2 bilayers deposited on a SiO 2 / Si substrate. Current-voltage characteristics are measured in the back-gate transistor configuration, with Ti contacts patterned by electron beam lithography. We confirm the n-type character of as-grown MoS 2 and we report normally-on field-effect transistors. Local characterization of field emission is performed inside a scanning electron microscope chamber with piezo-controlled tungsten tips working as the anode and the cathode. We demonstrate that an electric field of ~ 200 V / μ m is able to extract current from the flat part of MoS 2 bilayers, which can therefore be conveniently exploited for field emission applications even in low field enhancement configurations. We show that a Fowler-Nordheim model, modified to account for electron confinement in two-dimensional (2D) materials, fully describes the emission process.
Transport and Field Emission Properties of MoS₂ Bilayers
Passacantando, Maurizio;
2018-01-01
Abstract
We report the electrical characterization and field emission properties of MoS 2 bilayers deposited on a SiO 2 / Si substrate. Current-voltage characteristics are measured in the back-gate transistor configuration, with Ti contacts patterned by electron beam lithography. We confirm the n-type character of as-grown MoS 2 and we report normally-on field-effect transistors. Local characterization of field emission is performed inside a scanning electron microscope chamber with piezo-controlled tungsten tips working as the anode and the cathode. We demonstrate that an electric field of ~ 200 V / μ m is able to extract current from the flat part of MoS 2 bilayers, which can therefore be conveniently exploited for field emission applications even in low field enhancement configurations. We show that a Fowler-Nordheim model, modified to account for electron confinement in two-dimensional (2D) materials, fully describes the emission process.| File | Dimensione | Formato | |
|---|---|---|---|
|
198_nanomaterials-08-00151-v2.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


