We study the potential of graphene plasmons for spectrometer-free sensing based on surface-enhanced infrared absorption and Raman scattering. The large electrical tunability of these excitations enables an accurate identification of infrared molecular resonances by recording broadband absorption or inelastic scattering, replacing wavelength-resolved light collection by a signal integrated over photon energy as a function of the graphene doping level. The high quality factor of graphene plasmons plays a central role in the proposed detection techniques, which we show to be capable of providing label-free identification of the molecular vibration fingerprints. We find an enhancement of the absorption and inelastic scattering cross sections by 3-4 orders of magnitude for molecules in close proximity to doped graphene nanodisks under currently feasible conditions. Our results pave the way for the development of novel cost-effective sensors capable of identifying spectral signatures of molecules without using spectrometers and laser sources.

Molecular Sensing with Tunable Graphene Plasmons

Marini, Andrea
Investigation
;
2015-01-01

Abstract

We study the potential of graphene plasmons for spectrometer-free sensing based on surface-enhanced infrared absorption and Raman scattering. The large electrical tunability of these excitations enables an accurate identification of infrared molecular resonances by recording broadband absorption or inelastic scattering, replacing wavelength-resolved light collection by a signal integrated over photon energy as a function of the graphene doping level. The high quality factor of graphene plasmons plays a central role in the proposed detection techniques, which we show to be capable of providing label-free identification of the molecular vibration fingerprints. We find an enhancement of the absorption and inelastic scattering cross sections by 3-4 orders of magnitude for molecules in close proximity to doped graphene nanodisks under currently feasible conditions. Our results pave the way for the development of novel cost-effective sensors capable of identifying spectral signatures of molecules without using spectrometers and laser sources.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/123325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 94
social impact