We numerically investigate the propagation of a spatially localized and quasimonochromatic electromagnetic pulse through a slab with a Lorentz dielectric response in the epsilon-near-zero regime, where the real part of the permittivity vanishes at the pulse carrier frequency. We show that the pulse is able to excite a set of virtual polariton modes supported by the slab, with the excitation undergoing a generally slow damping due to absorption and radiation leakage. Our numerical and analytical approaches indicate that in its transient dynamics the electromagnetic field displays the very same enhancement of the field component perpendicular to the slab, as in the monochromatic regime. The transient trapping is inherently accompanied by a significantly reduced group velocity ensuing from the small dielectric permittivity, thus providing an alternative platform for achieving control and manipulation of slow light. © 2013 American Physical Society.

Polariton excitation in epsilon-near-zero slabs: Transient trapping of slow light

Ciattoni, Alessandro;Marini, Andrea;Rizza, Carlo;
2013

Abstract

We numerically investigate the propagation of a spatially localized and quasimonochromatic electromagnetic pulse through a slab with a Lorentz dielectric response in the epsilon-near-zero regime, where the real part of the permittivity vanishes at the pulse carrier frequency. We show that the pulse is able to excite a set of virtual polariton modes supported by the slab, with the excitation undergoing a generally slow damping due to absorption and radiation leakage. Our numerical and analytical approaches indicate that in its transient dynamics the electromagnetic field displays the very same enhancement of the field component perpendicular to the slab, as in the monochromatic regime. The transient trapping is inherently accompanied by a significantly reduced group velocity ensuing from the small dielectric permittivity, thus providing an alternative platform for achieving control and manipulation of slow light. © 2013 American Physical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/123348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact