We have investigated the interaction between a strong soliton and a weak probe with certain configurations that allow optical trapping in gas-filled hollow-core photonic-crystal fibers in the presence of the shock effect. We have shown theoretically and numerically that the shock term can lead to an unbroken parity-time- (PT-) symmetric potential in these kinds of fibers. Time irreversible behavior, a signature feature of the PT symmetry, is also demonstrated numerically. Our results will open different configurations and avenues for observing PT-symmetry breaking in optical fibers, without the need to resort to complex optical systems. © 2014 American Physical Society.
Shock-induced PT -symmetric potentials in gas-filled photonic-crystal fibers
Marini, AndreaSupervision
;
2014-01-01
Abstract
We have investigated the interaction between a strong soliton and a weak probe with certain configurations that allow optical trapping in gas-filled hollow-core photonic-crystal fibers in the presence of the shock effect. We have shown theoretically and numerically that the shock term can lead to an unbroken parity-time- (PT-) symmetric potential in these kinds of fibers. Time irreversible behavior, a signature feature of the PT symmetry, is also demonstrated numerically. Our results will open different configurations and avenues for observing PT-symmetry breaking in optical fibers, without the need to resort to complex optical systems. © 2014 American Physical Society.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.