We show that a homogeneous and isotropic slab, illuminated by a circularly polarized beam with no topological charge, produces vortices of order 2 in the opposite circularly polarized components of the reflected and transmitted fields, as a consequence of the transverse magnetic and transverse electric asymmetric response of the rotationally invariant system. In addition, in the epsilon-near-zero regime, we find that vortex generation is remarkably efficient in subwavelength thick slabs up to the paraxial regime. This physically stems from the fact that a vacuum paraxial field can excite a nonparaxial field inside an epsilon-near-zero slab since it hosts slowly varying fields over physically large portions of the bulk. Our theoretical predictions indicate that epsilon-near-zero media hold great potential as nanophotonic elements for manipulating the angular momentum of the radiation, since they are available without resorting to complicated micro- or nanofabrication processes and can operate even at very small (ultraviolet) wavelengths.

Efficient Vortex Generation in Subwavelength Epsilon-Near-Zero Slabs

Ciattoni, Alessandro
Investigation
;
Marini, Andrea
Investigation
;
Rizza, Carlo
Investigation
2017-01-01

Abstract

We show that a homogeneous and isotropic slab, illuminated by a circularly polarized beam with no topological charge, produces vortices of order 2 in the opposite circularly polarized components of the reflected and transmitted fields, as a consequence of the transverse magnetic and transverse electric asymmetric response of the rotationally invariant system. In addition, in the epsilon-near-zero regime, we find that vortex generation is remarkably efficient in subwavelength thick slabs up to the paraxial regime. This physically stems from the fact that a vacuum paraxial field can excite a nonparaxial field inside an epsilon-near-zero slab since it hosts slowly varying fields over physically large portions of the bulk. Our theoretical predictions indicate that epsilon-near-zero media hold great potential as nanophotonic elements for manipulating the angular momentum of the radiation, since they are available without resorting to complicated micro- or nanofabrication processes and can operate even at very small (ultraviolet) wavelengths.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/123361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 42
social impact