We consider the time evolution of a one dimensional n-gradient continuum. Our aim is to construct and analyze discrete approximations in terms of physically realizable mechanical systems, referred to as microscopic because they are living on a smaller space scale. We validate our construction by proving a convergence theorem of the microscopic system to the given continuum, as the scale parameter goes to zero.
Macroscopic Description of Microscopically Strongly Inhomogenous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials
dell’Isola, F.;Esposito, R.;
2015-01-01
Abstract
We consider the time evolution of a one dimensional n-gradient continuum. Our aim is to construct and analyze discrete approximations in terms of physically realizable mechanical systems, referred to as microscopic because they are living on a smaller space scale. We validate our construction by proving a convergence theorem of the microscopic system to the given continuum, as the scale parameter goes to zero.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.