A symmetric quiver (Q, s) is a finite quiver without oriented cycles Q = (Q0, Q1) equipped with a contravariant involution s on Q0 u Q1. The involution allows us to define a nondegenerate bilinear form -, - V on a representation V of Q. We shall say that V is orthogonal if (-, -) V is symmetric and symplectic if (-, -)V is skew-symmetric. Moreover, we define an action of products of classical groups on the space of orthogonal representations and on the space of symplectic representations. So we prove that if (Q, s) is a symmetric quiver of tame type then the rings of semi-invariants for this action are spanned by the semi-invariants of determinantal type cV and, when the matrix defining cV is skew-symmetric, by the Pfaffians pf V. To prove it, moreover, we describe the symplectic and orthogonal generic decomposition of a symmetric dimension vector. Â© Springer Science+Business Media B.V. 2011.

### Semi-Invariants of symmetric quivers of tame type

#### Abstract

A symmetric quiver (Q, s) is a finite quiver without oriented cycles Q = (Q0, Q1) equipped with a contravariant involution s on Q0 u Q1. The involution allows us to define a nondegenerate bilinear form -, - V on a representation V of Q. We shall say that V is orthogonal if (-, -) V is symmetric and symplectic if (-, -)V is skew-symmetric. Moreover, we define an action of products of classical groups on the space of orthogonal representations and on the space of symplectic representations. So we prove that if (Q, s) is a symmetric quiver of tame type then the rings of semi-invariants for this action are spanned by the semi-invariants of determinantal type cV and, when the matrix defining cV is skew-symmetric, by the Pfaffians pf V. To prove it, moreover, we describe the symplectic and orthogonal generic decomposition of a symmetric dimension vector. Â© Springer Science+Business Media B.V. 2011.
##### Scheda breve Scheda completa Scheda completa (DC)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11697/123516`
##### Citazioni
• ND
• 1
• 1