We propose a new method to compute the joint spectral radius and the joint spectral subradius of a set of matrices. We first restrict our attention to matrices that leave a cone invariant. The accuracy of our algorithm, depending on geometric properties of the invariant cone, is estimated. We then extend our method to arbitrary sets of matrices by a lifting procedure, and we demonstrate the efficiency of the new algorithm by applying it to several problems in combinatorics, number theory, and discrete mathematics. Copyright © 2010 Society for Industrial and Applied Mathematics.
Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/11697/123636
Titolo: | Joint spectral characteristics of matrices: A conic programming approach |
Autori: | |
Data di pubblicazione: | 2009 |
Rivista: | |
Handle: | http://hdl.handle.net/11697/123636 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.