Univariate piecewise-smooth refinable functions (i.e., compactly supported solutions of the equation (formula presented) are classified completely. Characterization of the structure of refinable splines leads to a simple convergence criterion for the subdivision schemes corresponding to such splines, and to explicit computation of the rate of convergence. This makes it possible to prove a factorization theorem about decomposition of any smooth refinable function (not necessarily stable or corresponding to a convergent subdivision scheme) into a convolution of a continuous refinable function and a refinable spline of the corresponding order. These results are applied to a problem of combinatorial number theory (the asymptotics of Euler’s partition function). The results of the paper generalize several previously known statements about refinement equations and help to solve two open problems. © 2005 American Mathematical Society.

Piecewise-smooth refinable functions

Protasov, Vladimir
2005-01-01

Abstract

Univariate piecewise-smooth refinable functions (i.e., compactly supported solutions of the equation (formula presented) are classified completely. Characterization of the structure of refinable splines leads to a simple convergence criterion for the subdivision schemes corresponding to such splines, and to explicit computation of the rate of convergence. This makes it possible to prove a factorization theorem about decomposition of any smooth refinable function (not necessarily stable or corresponding to a convergent subdivision scheme) into a convolution of a continuous refinable function and a refinable spline of the corresponding order. These results are applied to a problem of combinatorial number theory (the asymptotics of Euler’s partition function). The results of the paper generalize several previously known statements about refinement equations and help to solve two open problems. © 2005 American Mathematical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/123660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact