It has been recognized that an increased penetration of electric vehicles (EVs) may potentially alter load profile in a distribution network. Charging pattern of EVs and its corresponding electrical load pattern may be assessed and quantified by using either a deterministic method or stochastic approach. However, deterministic method does not account for stochastic nature of EV users which affects the load pattern and of stochastic nature of grid condition. Thus, a stochastic method is applied to develop a probabilistic model of EVs charging pattern that takes into account various factors such as vehicle class, battery capacity, state of charge (SOC), driving habit/need, i.e. involving trip type and purpose, plug-in time, mileage, recharging frequency per day, charging power rate and dynamic EV charging price under controlled and uncontrolled charging schemes. The probabilistic model gives EV charging pattern over a period of day for different months to represent the load pattern during different seasons of a year. The presented model gives a rigorous estimation of EV charging load pattern in a distribution network which is considered important for network operators.

Probabilistic modeling of electric vehicle charging pattern in a residential distribution network

Cecati, Carlo;
2018-01-01

Abstract

It has been recognized that an increased penetration of electric vehicles (EVs) may potentially alter load profile in a distribution network. Charging pattern of EVs and its corresponding electrical load pattern may be assessed and quantified by using either a deterministic method or stochastic approach. However, deterministic method does not account for stochastic nature of EV users which affects the load pattern and of stochastic nature of grid condition. Thus, a stochastic method is applied to develop a probabilistic model of EVs charging pattern that takes into account various factors such as vehicle class, battery capacity, state of charge (SOC), driving habit/need, i.e. involving trip type and purpose, plug-in time, mileage, recharging frequency per day, charging power rate and dynamic EV charging price under controlled and uncontrolled charging schemes. The probabilistic model gives EV charging pattern over a period of day for different months to represent the load pattern during different seasons of a year. The presented model gives a rigorous estimation of EV charging load pattern in a distribution network which is considered important for network operators.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/123844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 65
social impact