Stochastic monotonicity is a well known partial order relation between probability measures defined on the same partially ordered set. Strassen Theorem establishes equivalence between stochastic monotonicity and the existence of a coupling compatible with respect to the partial order. We consider the case of a countable set and introduce the class of emph{finitely decomposable flows} on a directed acyclic graph associated to the partial order. We show that a probability measure stochastically dominates another probability measure if and only if there exists a finitely decomposable flow having divergence given by the difference of the two measures. We illustrate the result with some examples.
Stochastic monotonicity from an Eulerian viewpoint
Davide Gabrielli
;Ida Germana Minelli
2019-01-01
Abstract
Stochastic monotonicity is a well known partial order relation between probability measures defined on the same partially ordered set. Strassen Theorem establishes equivalence between stochastic monotonicity and the existence of a coupling compatible with respect to the partial order. We consider the case of a countable set and introduce the class of emph{finitely decomposable flows} on a directed acyclic graph associated to the partial order. We show that a probability measure stochastically dominates another probability measure if and only if there exists a finitely decomposable flow having divergence given by the difference of the two measures. We illustrate the result with some examples.File | Dimensione | Formato | |
---|---|---|---|
BJPS-2019.pdf
solo utenti autorizzati
Descrizione: file pubblicato
Tipologia:
Documento in Versione Editoriale
Licenza:
Dominio pubblico
Dimensione
262.86 kB
Formato
Adobe PDF
|
262.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.