In this paper a new low-voltage low-power instrumentation amplifier (IA) is presented. The proposed IA is based on supply current sensing technique where Op-Amps in traditional IA based on this technique are replaced with voltage buffers (VBs). This modification results in a very simplified circuit, robust performance against mismatches and high frequency performance. To reduce the required supply voltage, a low-voltage resistor-based current mirror is used to transfer the input current to the load. The input and output signals are of voltage kind and the proposed IA shows ideal infinite input impedance and a very low output one. PSPICE simulation results, using 0.18 μm TSMC CMOS technology and supply voltage of ±0.9 V, show a 71 dB CMRR and a 85 MHz constant −3 dB bandwidth for differential-mode gain (ranging from 0 dB to 18 dB). The output impedance of the proposed circuit is 1.7 Ω and its power consumption is 770 µW. The method introduced in this paper can also be applied to traditional circuits based on Op-Amp supply current sensing technique.

A low-voltage low-power instrumentation amplifier based on supply current sensing technique

SAFARI, LEILA;Ferri, Giuseppe;Stornelli, Vincenzo
2018-01-01

Abstract

In this paper a new low-voltage low-power instrumentation amplifier (IA) is presented. The proposed IA is based on supply current sensing technique where Op-Amps in traditional IA based on this technique are replaced with voltage buffers (VBs). This modification results in a very simplified circuit, robust performance against mismatches and high frequency performance. To reduce the required supply voltage, a low-voltage resistor-based current mirror is used to transfer the input current to the load. The input and output signals are of voltage kind and the proposed IA shows ideal infinite input impedance and a very low output one. PSPICE simulation results, using 0.18 μm TSMC CMOS technology and supply voltage of ±0.9 V, show a 71 dB CMRR and a 85 MHz constant −3 dB bandwidth for differential-mode gain (ranging from 0 dB to 18 dB). The output impedance of the proposed circuit is 1.7 Ω and its power consumption is 770 µW. The method introduced in this paper can also be applied to traditional circuits based on Op-Amp supply current sensing technique.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/126355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact