We study an hydrodynamical model describing the motion of thick astrophysical disks relying on compressible Navier-Stokes-Fourier-Poisson system. We also suppose that the medium is electrically charged and we include energy exchanges through radiative transfer. Supposing that the system is rotating, we study the singular limit of the system when the Mach number, the Alfven number and Froude number go to zero and we prove convergence to a 3D incompressible MHD system with radiation with two stationary linear transport equations for transport of radiation intensity.

Low mach number limit for a model of accretion disk

Donatelli, Donatella;
2018-01-01

Abstract

We study an hydrodynamical model describing the motion of thick astrophysical disks relying on compressible Navier-Stokes-Fourier-Poisson system. We also suppose that the medium is electrically charged and we include energy exchanges through radiative transfer. Supposing that the system is rotating, we study the singular limit of the system when the Mach number, the Alfven number and Froude number go to zero and we prove convergence to a 3D incompressible MHD system with radiation with two stationary linear transport equations for transport of radiation intensity.
File in questo prodotto:
File Dimensione Formato  
Galley_3_DDN-10-01-2018-style.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 483.4 kB
Formato Adobe PDF
483.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/128063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact