We discuss diffusion of particles in a spatially inhomogeneous medium. From the microscopic viewpoint we consider independent particles randomly evolving on a lattice. We show that the reversibility condition has a discrete geometric interpretation in terms of weights associated to un–oriented edges and vertices. We consider the hydrodynamic diffusive scaling that gives, as a macroscopic evolution equation, the Fokker–Planck equation corresponding to the evolution of the probability distribution of a reversible spatially inhomogeneous diffusion process. The geometric macroscopic counterpart of reversibility is encoded into a tensor metrics and a positive function. The Fick’s law with inhomogeneous diffusion matrix is obtained in the case when the spatial inhomogeneity is associated exclusively with the edge weights. We discuss also some related properties of the systems like a non–homogeneous Einstein relation and the possibility of uphill diffusion
Fick and Fokker–Planck diffusion law in inhomogeneous media
Matteo Colangeli;Davide Gabrielli
2019-01-01
Abstract
We discuss diffusion of particles in a spatially inhomogeneous medium. From the microscopic viewpoint we consider independent particles randomly evolving on a lattice. We show that the reversibility condition has a discrete geometric interpretation in terms of weights associated to un–oriented edges and vertices. We consider the hydrodynamic diffusive scaling that gives, as a macroscopic evolution equation, the Fokker–Planck equation corresponding to the evolution of the probability distribution of a reversible spatially inhomogeneous diffusion process. The geometric macroscopic counterpart of reversibility is encoded into a tensor metrics and a positive function. The Fick’s law with inhomogeneous diffusion matrix is obtained in the case when the spatial inhomogeneity is associated exclusively with the edge weights. We discuss also some related properties of the systems like a non–homogeneous Einstein relation and the possibility of uphill diffusionFile | Dimensione | Formato | |
---|---|---|---|
accg.pdf
solo utenti autorizzati
Descrizione: versione pubblicata
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
676.66 kB
Formato
Adobe PDF
|
676.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.